

Deliverable number and name D6.3 – Ontology Web Server

Due date 30/11/2018

Work package WP6

Deliverable leader EURECOM

Authors Raphaël Troncy

Reviewers Javier Sevilla, Cristina Portalés

Approved by UVEG

Dissemination levels Public

Version V1.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 769504

D6.3: Ontology Web
Server

Document revision history

Version Date Contributor Comments

1.0 25/01/2019 Raphael Troncy Full deliverable

1.1 14/02/2019 Raphael Troncy Add a new section for
API and data access

List of acronyms

CRM Conceptual Reference Model

RDF Resource Description Framework

OWL Ontology Web Language

SPARQL
SPARQL Protocol and RDF Query

Language

SKOS
Simple Knowledge Organization

System

Table	of	Contents	
1. Introduction ... 4

2. Browsing the SILKNOW Thesaurus .. 5

2.1 Producing the SKOS version of the thesaurus ... 5

2.2 Visualizing the SILKNOW thesaurus ... 6

3. Browsing the SILKNOW Ontology and Knowledge Graph ... 8

4. API Access to the SILKNOW Knowledge Graph ... 11

4.1 Using SPARQL as an API ... 11

4.2 Using the SILKNOW Linked Data API ... 12

5. References ... 14

	
 	

This deliverable describes how to access the SILKNOW thesaurus and ontology and their

documentation. It presents the tools used together with their specific configuration as part of the

SILKNOW platform.

1.	Introduction	

The deliverable D6.3 describes the software that have been used to provide access and documentation of the

SILKNOW thesaurus described in D3.1 (Section 2) and the SILKNOW ontology described in D3.2 (Section

3). We provide the various URLs where those tools are being developed and deployed.

The overall architecture of the SILKNOW platform described in D6.1 is depicted in the figure below.

Figure 1: General architecture of the SILKNOW platform (borrowed from D6.1)

2.	Browsing	the	SILKNOW	Thesaurus	

2.1	Producing	the	SKOS	version	of	the	thesaurus	

The SILKNOW thesaurus has been first primarily edited in Spanish, and it is currently being translated in

other languages such as English, French and Italian.

The SILKNOW thesaurus construction has been described in the Deliverable D3.1. The result is a Google

spreadsheet available at https://docs.google.com/spreadsheets/d/1rrVbIaqkjhnFw1iPAq-Y2sAvmnnimoDOH-

ubMU7TSYQ/edit#gid=976709904. This spreadsheet can be exported in various CSV files, one file per tab.

Next, we developed an open source converter that takes as input such a CSV and convert it into SKOS. The

software code is available at https://github.com/silknow/thesaurus.

For using the converter, the following command needs to be executed:

 npm install --production ## download the dependencies

 npm run convert ## start the conversion

The parameters are:

 --src, -s, source folder: it parses all csv files inside this

folder. By default, the folder is ‘./raw-data’

 --dst, -d, output file. By default, the output file is

‘thesaurus.ttl’

For each concept, we mint a new URI following the pattern:

<http://data.silknow.org/vocabulary/[ID]>. Finally, we create the general SKOS concept

scheme <http://data.silknow.org/vocabulary/silk-thesaurus> that groups all the top

concepts of the thesaurus and has for label: "Thesaurus describing silk related

techniques and material"@en

We post-process the result using the Skosify tool available at https://github.com/NatLibFi/Skosify. This tool

further clean the SKOS files by detecting double preferred labels in the same language which is forbidden by

the SKOS recommendation. It also removes trailing spaces and add relationships in both ways. To run the

Skosify tool, the following commands need to be executed:

 pip install --upgrade skosify

 skosify thesaurus.ttl -o thesaurus.ttl

Finally, we load the final version of the thesaurus in RDF triplestore available at http://data.silknow.org/sparql

2.2	Visualizing	the	SILKNOW	thesaurus	

We deployed the Skosmos open source tool developed at https://github.com/NatLibFi/Skosmos to visualize

the thesaurus.

The SILKNOW thesaurus is available at http://skosmos.silknow.org/. The user interface is localized in both

English and Spanish and adapts according to the preferred language of the user’s web browser.

Skosmos is configured to load the data from the SILKNOW RDF endpoint and generates its view doing

SPARQL queries directed to http://data.silknow.org/sparql.

Figure 2: Homepage of Skosmos configured to browse both the AAT and the SILKNOW thesauri

The Figure 2 depicts the welcome page and enables to select to browse either the original Getty AAT

thesaurus, or the SILKNOW thesaurus which is specializing AAT.

Figure 3: General page showing statistics of the SILKNOW thesaurus

The Figure 3 depicts the general metadata of the SILKNOW thesaurus. The metadata includes the creation
date and the last modification date of the thesaurus and the number of concepts. The version 1.0 of the
SILKNOW thesaurus contains 443 concepts. On the left side, the user can click on any concept to have more
detailed information. Two views are offered: the alphabetical order of the concepts or their organization in a
hierarchy following the broader / narrower relationships.

Figure 4: Detailed view of the Acanalado concept

The Figure 4 depicts the detailed view of the Acanalado concept, which definition, in Spanish, reads:
“Tela de seda que tenía la trama formando canales. Se distinguían varias clases: la que tenía el acanalado
sencillo, y la de cuadritos o de ladrillo, ambas tenían dos caras formadas por urdimbre o bien por trama y la
que tenía acanalado compuesto formando haz. Los diferentes tipos de acanalados se suelen denominar de
acuerdo con el aspecto final del tejido o del relieve del efecto de acanalado.”

Furthermore, this concept is defined as narrower than the AAT concept http://vocab.getty.edu/aat/300231684
(<textile materials by weaving technique>). It is itself the broader concept of 7 other concepts and it is a
related concept to both “Delfinado” and “Otomán”.

 	

3.	Browsing	the	SILKNOW	Ontology	and	Knowledge	Graph	

The SIKNOW ontology is developed within the Task 3.3. This ontology is an implementation of the

SILKNOW model as described in the Deliverable D2.3 – Data Model Definition. It is based on the CIDOC-

CRM ontology, and more precisely, the Erlangen implementation in OWL of this ontology available at

http://erlangen-crm.org/current/.

We developed an open source converter in JAVA (Java version > 1.8), available at

https://github.com/silknow/converter that takes as input any of the museum data records that have been

crawled and converts it in RDF. In order to use the converter, the following command needs to be executed:

 ./gradlew run --args="[--log=<logLevel>] [-o=<outputFolder>] TYPE
FOLDER"

where the required arguments are:

 TYPE. Museum source data: imatex, garin, joconde

 FOLDER. Source folder to process or a single file which is also
accepted.

and where the optional parameters are:

 --log. The log level, according to the SLF4J nomenclature1, by
default: WARN.

 -o, --output. Output folder, by default: an out folder siblings to
the input directory.

The following are examples of commands:

 ./gradlew run --args="imatex
../crawler/data/imatex/records/3345_en.json --log DEBUG -o ./output"

 ./gradlew run --args="imatex
../crawler/data/imatex/records/3008_en.json --log DEBUG -o ./output"

 ./gradlew run --args="joconde
../crawler/data/joconde/records/95.71.2.json -o ./output"

 ./gradlew run --args="joconde
../crawler/data/joconde/records/95.71.364.json -o ./output"

 ./gradlew run --args="garin ../../Desktop/garin/T000053.xls -o
./output"

We have processed three datasets, namely IMATEX, JOCONDE and GARIN, following the mapping rules
described in the Deliverable D3.2. This generates three RDF dumps that we have loaded in the SILKNOW
RDF endpoint available at http://data.silknow.org/sparql.

1 https://www.slf4j.org/api/org/apache/commons/logging/Log.html

The SPARQL endpoint is powered by the Openlink Virtuoso software, http://virtuoso.openlinksw.com/. We
also configured a facetted browser enabling to browse the SILKNOW data, available at
http://data.silknow.org/fct/. We strictly follow the linked data principles, and each URI identifying an object is
dereferencable.

Figure 5: Virtuoso view of an object from the IMATEX museum

The Figure 5 depicts the Virtuoso view for the object identified by http://data.silknow.org/object/5a087a1b-
2003-33ed-ac71-bb4e82d5a0b5. This described the object 3273_en of the IMATEX museum following the
SILKNOW ontology. In the details, this object depicts “ floral patterns”.

Figure 6: Virtuoso view of the production information of an object from the IMATEX museum

The Figure 6 depicts the Virtuoso view of the production information for the object identified by
http://data.silknow.org/object/5a087a1b-2003-33ed-ac71-bb4e82d5a0b5. Hence, we know that this object has
been made using silk and vegetal fibres, in Spain and in Italy, during the 16th and 17th century using the
following weaving techniques: trama llançada, patterned fabric, brocatelle.

As future work, we will replace part of this metadata using terms from the SILKNOW thesaurus.

4.	API	Access	to	the	SILKNOW	Knowledge	Graph	

4.1	Using	SPARQL	as	an	API	

The SPARQL Query Language is a declarative query language (like SQL) for performing data manipulation
and data definition operations on data represented as a collection of RDF statements2.

A SPARQL query has a solution modifier (or head) and a query body. The solution modifier provides the
basis for categorizing different types of SPARQL query solutions. The query body comprises a collection of
RDF statement patterns that represent the entity relationships to which a query is scoped. The solution
modifier includes read-oriented data access (SELECT, ASK, DESCRIBE, CONSTRUCT) and write-oriented
data access (CREATE, INSERT, UPDATE, DELETE, CLEAR, DROP).

A SPARQL Query Service is an HTTP Service (also known as a Web Service) that offers an API for
performing declarative data definition and data manipulation operations on data represented as RDF sentence
collections, via GET, POST, and PATCH operations that support query solution (result set) delivery using a
variety of negotiable document types. SPARQL Queries are executable directly from any computer using
cURL3 , a command line tool and library for transferring data with URLs.

A first API providing access to the SILKNOW knowledge graph is therefore:

QUERY=$(<example-query.sparql) && curl -X POST -H "Accept:application/sparql-
results+json" --data-urlencode "query=$QUERY" http://data.silknow.org/sparql

This instructs to submit a particular query to the endpoint and to get the results in the JSON format, which is
the most favorite format for web developers. The full specification of the HTTP API is as follows4:

 HTTP methods: GET, PUT, POST

 Endpoint: http://data.silknow.org/sparql

 Required parameters:
o query: the url-encoded of the SPARQL query
o named_graphs: a vector of named graphs (or NULL to prevent overriding named graphs

specified in the query in the FROM clause)

 Optional parameters
o dflt_graph: the default graph URI (string or NULL)
o timeout: the timeout value for query execution expressed in milliseconds (values less than

1000 are ignored)
o debug: if set to on, the SPARQL Compiler will check if all variables are declared, and if there

is variable that is not declared, an error will be raised

We provide below several examples of SPARL queries that can be used on the SILKNOW endpoint.

Example 1: list all weaving techniques mentioned in the data

2 https://medium.com/virtuoso-blog/what-is-a-sparql-endpoint-and-why-is-it-important-b3c9e6a20a8b
3 https://curl.haxx.se/
4 See also http://vos.openlinksw.com/owiki/wiki/VOS/VOSSparqlProtocol for the specific implementation of Virtuoso of
the http SPARQL API

select DISTINCT *
where {
 [] ecrm:P108_has_produced [];
 ecrm:P32_used_general_technique ?tech .
}

Example 2: list all materials mentioned in the data

select DISTINCT *
where {
 [] ecrm:P108_has_produced [];
 ecrm:P126_employed ?material .
}

Example 3: list all objects and filter by material (e.g. 'ottoman') or technique (e.g. 'doble tela) or

location (e.g. 'Italy') or period of time (e.g. '15th century')

select *
where {
 ?s a ecrm:E22_Man-Made_Object;
 rdfs:label | dc:identifier ?label .
 ?production ecrm:P108_has_produced ?s;
 ecrm:P126_employed ?material ;
 ecrm:P4_has_time-span / rdfs:label ?time .
 OPTIONAL {?production ecrm:P8_took_place_on_or_within / rdfs:label
?location }
 OPTIONAL {?production ecrm:P32_used_general_technique ?tech }
 ## FILTER BY MATERIAL ottoman
 # VALUES ?material {'ottoman'}
 ## FILTER BY TECHNIQUE doble tela
 VALUES ?tech {'doble tela'}
 ## FILTER BY TIME 15th century
 # VALUES ?time {'15th century'}
 ## FILTER BY LOCATION Italy
 # VALUES ?location {'Italy'}
}

4.2	Using	the	SILKNOW	Linked	Data	API	

We have started to implement a second, more classic, REST-based API on top of the SILKNOW knowledge
base. Our implementation relies on ELDA5, an implementation of the Linked Data API proposed by the UK
government6. In a nutshell, this implementation enables to map pre-defined SPARQL queries with REST calls
via a configuration file. Hence, the query given in the example 1 above enabling to retrieve all techniques
mentioned in the data could simply be served via a HTTP call such as:

 GET http://data.silknow.org/api/material

5 https://www.epimorphics.com/technology/elda/
6 https://github.com/UKGovLD/linked-data-api

This simple request simply retrieves all possible values of material found in the knowledge base. A more
interesting query is:

 GET
http://data.silknow.org/api/object/location/{location}/period/{time}/tech
nique/{technique}/language/{lang}

This more complex query will retrieve all objects (description of museum records) found in the knowledge
base that have been created in a particular location (e.g. Italy), during a particular time period (e.g. 15th
Century) using a particular weaving technique (e.g. < http://data.silknow.org/vocabulary/421>, the identifier
of the ‘doble tela’ weaving technique in the SILKNOW thesaurus), and this description must be returned in a
specific language (e.g. Spanish).

The partial specification of this REST API is as follows:

 HTTP methods: GET, PUT, POST

 Endpoint: http://data.silknow.org/api/

 Calls available:
o /object/all

 Retrieve ALL objects described in the knowledge base
o /object/location/{location}

 Retrieve ALL objects that have been produced in location
o /object/period/{period}

 Retrieve ALL objects that have been produced during the time period
o /object/material/{material}

 Retrieve ALL objects of a particular material
o /object/technique/{technique}

 Retrieve ALL objects made following a particular technique
o /object/search/{keyword}

 Retrieve ALL objects for which the searched keyword is present in the title, or
description, or notes in the object record

o /thesaurus/all
 Retrieve ALL concepts from the SILKNOW thesaurus

o /thesaurus/top
 Retrieve ALL TOP concepts from the SILKNOW thesaurus

o /thesaurus/search/{keyword}
 Retrieve ALL concepts from the SILKNOW thesaurus for which the searched

keyword is present in the concept name or description

 	

5.	References	

 [1] SILKNOW Deliverable D2.1 – Data Model Definition, May 2018.

 [2] SILKNOW Deliverable D2.2 – Initial Collected Data, July 2018

 [3] SILKNOW Deliverable D2.3 - Definition of the Graphical User Interface (GUI), August 2018.

 [4] SILKNOW Deliverable D2.4 – Pilot Scenarios Definition, September 2018.

 [5] SILKNOW Deliverable D3.1 – Historical Silk Multilingual Thesaurus, December 2018.

 [6] SILKNOW Deliverable D3.2 – Design of SILKNOW Ontology, November 2018.

 [7] SILKNOW Deliverable D6.1 – Design Overall Software Structure and Data Sharing Framework

