

1

Deliverable number and name: D6.6. Functional Evaluation Report

Due date: 31/05/2021

Work Package: WP6

Deliverable leader: UVEG

Authors:

Cristina Portalés (UVEG), Javier Sevilla

(UVEG), Pablo Casanova (UVEG), Thibault

Ehrhart (EURECOM), Raphaël Troncy

(EURECOM)

Reviewers: Dunja Mladenic (JSI)

Approved by: Jorge Sebastián (UVEG)

Dissemination level: PU

Version: V1.0

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 769504

D6.6. FUNCTIONAL
EVALUATION REPORT

2

Document revision history

Version Date Contributor Comments

V0.0 04/05/2021 Cristina Portalés Table of contents

V0.1 15/06/2021 Javier Sevilla Description of the stress

test process

V0.2 16/06/2021 Thibault Ehrhart Description of the APIS /

Queries

V0.3 16/06/2021 Javier Sevilla Results of the ADASilk

APIs stress tests

V0.4 22/06/2021 Javier Sevilla Result of the thesaurus

stress tests

V0.5 25/06/2021 Cristina Portalés, Pablo

Casanova

Final testing

V0.6 29/06/2021 Dunja Mladenic Review suggestions

V0.7 18/07/2021 Raphaël Troncy Add discussion and

conclusion

V0.8 20/07/2021 Daniel Sheerin English proofreading

V1.0 21/07/2021 Cristina Portalés Layout

List of acronyms

AAT Art and Architecture Thesaurus

API Application Programming Interface

CPU Central Processing Unit

ICT Information and Communication Technologies

JSI Institut Jozef Stefan

KG Knowledge Graph

OS Operating System

RAM Random Access Memory

SSH Social Sciences and Humanities

URI Uniform Resource Identifier

UVEG Universitat de València Estudi General

WP Work Package

4

Table of contents

1. INTRODUCTION ... 6

2. SILKNOW’S THESAURUS BROWSER ... 7

 Description of SILKNOW’s Thesaurus .. 7

 Evaluation of the functionalities identified by SSH experts 7

2.2.1. Functionality 01 ... 9

2.2.2. Functionality 02 ... 10

2.2.3. Functionality 03 ... 11

2.2.4. Functionality 04 ... 11

2.2.5. Functionality 05 ... 12

2.2.6. Functionality 06 ... 13

2.2.7. Functionality 07 ... 13

2.2.8. Functionality 08 ... 14

2.2.9. Functionality 09 ... 15

2.2.10. Discussion ... 15

 Stress testing.. 15

2.3.1. Test description ... 16

2.3.2. How to evaluate the result of a request .. 19

2.3.3. Gathered data during the tests .. 20

2.3.4. SKOSMOS URI ... 22

2.3.5. SILKNOW PUBLIC API .. 25

2.3.6. SILKNOW SPARQL API .. 28

2.3.7. Discussion ... 30

3. ADASILK ... 31

 Description of ADASilk ... 31

 Evaluation of the functionalities identified by SSH experts 31

3.2.1. Functionality 01 ... 34

3.2.2. Functionality 02 ... 35

3.2.3. Functionality 03 ... 36

3.2.4. Functionality 04 ... 36

3.2.5. Functionality 05 ... 37

3.2.6. Functionality 06 ... 38

3.2.7. Functionality 07 ... 39

3.2.8. Functionality 08 ... 40

3.2.9. Functionality 09 ... 40

5

3.2.10. Functionality 10 ... 41

3.2.11. Functionality 11 ... 43

3.2.12. Functionality 12 ... 44

3.2.13. Functionality 13 ... 45

3.2.14. Functionality 14 ... 47

3.2.15. Functionality 15 ... 47

3.2.16. Functionality 16 ... 48

3.2.17. Functionality 17 ... 49

3.2.18. Functionality 18 ... 50

3.2.19. Functionality 19 ... 51

3.2.20. Functionality 20 ... 52

3.2.21. Functionality 21 ... 53

3.2.22. Functionality 22 ... 55

3.2.23. Functionality 23 ... 56

3.2.24. Functionality 24 ... 56

3.2.25. Functionality 25 ... 57

3.2.26. Functionality 26 ... 57

3.2.27. Discussion ... 58

 Stress testing.. 58

3.3.1. Test description ... 58

3.3.2. Definition of the parameters measured .. 60

3.3.3. Gathered data during the tests .. 60

3.3.4. Results for ADASilk Internal API .. 61

3.3.5. Results for SILKNOW Public API ... 63

3.3.6. Results for SPARQL API ... 64

3.3.7. Discussion ... 66

4. SERVER STATISTICS ... 66

5. CONCLUSIONS .. 67

REFERENCES .. 68

ANNEX I. Request specification for stress test with ADASilk .. 69

6

1. INTRODUCTION

This deliverable consists of a technical report describing the functional and stress testing that
we have carried out for two of the tools developed in SILKNOW: SILKNOW’s Thesaurus
Browser (presented in deliverable D3.1) and ADASilk (presented in deliverable D6.4).

Apart from the overall requirements which the tools fulfil, the specific functionalities that
should be offered by SILKNOW’s Thesaurus Browser and ADASilk were identified by SSH
partners in the scope of WP2. They built a table of functionalities for the tools developed in
the project (which also includes Virtual Loom and STMaps), and identified which
functionalities were relevant to which user profiles (or “personas”) and what sectors; these
were described as part of D2.4. Therefore, for the functionality evaluation in this deliverable,
we review all the identified functionalities one by one, describing where they have been
integrated or how they can be used in the current versions of the tools, and providing
examples of their use.

While with the functionality evaluation we intend to prove that the required functionalities have
been properly integrated into the software tools, with the stress testing we aim to determine
their robustness by testing beyond the limits of normal operation. The parameters to be
measured in both tools are the same: the response time and the failure rate given a single
server configuration. These parameters are measured for both tools in a variety of test
scenarios and sets of users. Additionally, each test was repeated five times to obtain mean
values.

This deliverable is related to other deliverables in the project, mainly, D2.4, D3.1, D6.3, D6.4,
D6.7, D7.3 and D7.6. As mentioned above, in D3.1 “Historical silk multilingual thesaurus”,
SILKNOW’s Thesaurus, which involves dedicated silk heritage terminology, was presented.
Its design and implementation were described as part of D6.3 “Ontology web server” and D6.4
“Design and implementation of the multilingual web-based thesaurus”. Regarding ADASilk, it
was also presented as part of D6.4. It must be noted that the term ADASilk was used after the
production of D6.4, where it is referred to as a “web-based search application”. A final update

The current deliverable presents the Exploitation Plan designed to maximize the impact of

SILKNOW results. It describes the activities to be undertaken, to whom they are

addressed, as well as who is going to carry them out. It is divided into seven sections,

including the exploitation strategy, roles, responsibilities, indicators and timing.

This deliverable consists of a test report on the SILKNOW system, mainly

developed and integrated in Workpackage 6, and in Workpagage 3. On the one

hand, the system includes SILKNOW’s Thesaurus, which was defined,

designed and implemented in Tasks T3.1, T6.3 and T6.4, and presented in

Deliverable D3.1, D6.3 and D6.4, respectively. On the other hand, it includes

ADASilk, developed in Task T6.4 and presented in Deliverable D6.4. This

deliverable shows the results of a functional and stress testing of both

components.

7

on ADASilk, including the integration of its components, will be included in deliverable D6.7
“System Documentation”. The functionalities of the tools (SILKNOW’s Thesaurus Browser
and ADASilk) were established by different consortium partners, mainly those related to the
SSH fields, as part of WP2. These functionalities were related to personas and sectors which
were defined in D2.4 “Pilot scenario definition”. The usability of ADASilk was evaluated by the
general public, including targeted audiences. The results are integrated in D7.3 “Usability
evaluation by online users of the system”. In addition, the evaluation of the Thesaurus
Browser is presented as part of D7.6 “SILKNOW system evaluation”.

Section 2 of this deliverable is dedicated to the evaluation of SILKNOW’s Thesaurus Browser.
It provides an overview of the tool and outlines the functionalities, personas and sectors
identified to be relevant for the tool before presenting the stress testing. Section 3 is dedicated
to the evaluation of ADASilk and follows a similar structure. Finally, section 4 presents the
server statistics and section 5 the conclusions.

2. SILKNOW’S THESAURUS BROWSER

 Description of SILKNOW’s Thesaurus

The multilingual SILKNOW thesaurus is a controlled vocabulary which has a semantic
network of unique concepts [1]. Each concept has a unique preferred label per language (657
in English, 658 in Spanish and French and 651 in Italian) as well as multiple alternative labels
(or synonyms) in each language. Concepts are arranged into hierarchies, using a Narrower
(or its inverse Broader) relationship. Concepts can also have associative concepts using the
Related relationship. This thesaurus is unique as it is the only one entirely dedicated to silk
heritage, and it includes weaving techniques, materials, depictions and equipment, among
other things.

We further developed and deployed the SKOSMOS software [2] in order to search and browse
the SILKNOW thesaurus. The so-called SILKNOW Thesaurus Browser is configured to load
the data from the SILKNOW Knowledge Graph and generates its views carrying out SPARQL
queries to the SILKNOW SPARQL endpoint [3] using the internal SKOSMOS API.

 Evaluation of the functionalities identified by SSH experts

As explained in the introduction, the functionalities that should be offered by SILKNOW’s
Thesaurus Browser were identified by SSH partners in the scope of WP2. From the table that
they prepared with the description of functionalities, in Table 1 we present those most related
to the Thesaurus. In this table, we also give examples and additional comments to better
explain the functionalities which the tool should provide, as well as to which personas and
sectors this can be of relevance. It is the goal of the functional evaluation to show which of the
functionalities were successfully integrated into the Thesaurus Browser and how this
integration was achieved. We have added a last column to this table, in grey, which
summarizes the results of the functionality evaluation which are presented in the following
subsections (2.2.1 to 2.2.9). In order to show if the functionalities were implemented, we have
reviewed where they have been integrated into the tool and how they can be accessed and
used. We also provide graphical examples for the sake of clarity. Finally, a discussion is given
in Section 2.2.10.

8

Functionality
ID

Description of the
functionality

Examples,
additional
comments

Personas Sectors Fulfilled?

General functionality: Having access to a more personalized experience

01 Making all our web
resources responsive
to all user devices
(desktop/laptop, tablet,
smartphone)

All All Yes

02 Choosing the language
of the Web interface
and the thesaurus
terms

 All All Yes

General functionality: Searching

03 Using a simple search
interface

Based on
metadata (text-
only)

All All Yes

04 For queries that
provide no answers (or
for all queries), suggest
related search terms, in
the same or other
languages

“Related” (search
terms) can mean
different things.

All All Yes

05 Searching the
thesaurus for terms
and accessing their
definition

 Museum
director

Research and
Education

 Yes

06 Giving the user the
option to choose in the
thesaurus the
languages of the
definitions, related
terms and translations
of these terms

For instance,
letting the user
choose whether
he only wants
definitions in
French or also
translations into
all four languages

Museum
director

Research and
Education

 Yes

07 Browsing visually the
thesaurus’ terms,
through drop-down
hierarchies

 All Research and
Education

 Yes

General functionality: Finding and visualizing

08 Linking SILKNOW data
to other online
resources such as
Europeana, Wikidata,
IdRef, RAMEAU,
Library of Congress
authorities... etc.

We mean an
automated
process, nothing
that has to be
invoked by the
user, but an
added level of

ICOM
Conservation
Committee
employee

Cultural
heritage and
leisure

 Yes

9

reference
provided

09 Retrieving
bibliographic
references related to a
record, when available.

 College Student Research and
Education

 Yes

Table 1. List of the functionalities that SILKNOW’s Thesaurus Browser should fulfil
according to SSH partners, and their relation to personas and sectors that were identified in

D2.4. The last column, in grey, summarizes the outcomes of the functionality evaluation.

2.2.1. Functionality 01

Description of the functionality: Making all our web resources responsive to all user devices
(desktop/laptop, tablet, smartphone).
Fulfilled: Yes.
Implementation/use: SILKNOW’s Thesaurus Browser is prepared to be used on standard
devices (desktop/laptop, tablet, smartphone) and making use of most modern web browsers
(Chrome, Safari, Edge, etc.). To show this, a few examples are provided in Figure 1, where
the same action, browsing the term “damask”, is applied using different devices and
browsers, also involving different operating systems.

Interacting with the Thesaurus using an iPad and the

Google Chrome browser.

Interacting with the Thesaurus using an Android

mobile phone, in vertical (top) and horizontal (down)
mode, and the Google Chrome browser.

10

Interacting with the Thesaurus using a laptop

(MacBook Pro) and the Brave browser.

Interacting with the Thesaurus using a laptop

(MacBook Pro) and the Safari browser.

Interacting with the Thesaurus using a desktop

computer (Windows OS) and the Google Chrome
browser.

Interacting with the Thesaurus using a desktop
computer (Windows OS) and the Edge browser.

Figure 1. Screenshots of SILKNOW’s Thesaurus Browser to test functionality 01. Different
devices and browsers were used.

2.2.2. Functionality 02

Description of the functionality: Choosing the language of the Web interface and the
thesaurus terms.
Fulfilled: Yes.
Implementation/use: At the top of the web page there is a selector to choose the language
for the user interface. In the search box there is also another selector to change the language
the user wants to search terms for (there is the option to search for all the languages at the
same time). This is illustrated in Figure 2.

11

Interface language dropdown provides the ability

to change the language of the user interface.

The content language dropdown allows users
to search for terms in one of the 4 languages

present in the thesaurus.

Figure 2. Screenshots of SILKNOW’s Thesaurus Browser to test functionality 02. The
difference between changing/selecting the interface language (left) and the content

language (right) is shown.

2.2.3. Functionality 03

Description of the functionality: Using a simple search interface.
Fulfilled: Yes.
Implementation/use: The search interface consists of one search box with one selector for
the language of the terms. The search box includes autocomplete functionality to provide
users matching terms as words are being written. Examples are shown in Figure 3, where a
user is searching for a term in the search box.

Empty search box

Search box selected by the user

Figure 3. Screenshots of SILKNOW’s Thesaurus to test functionality 03.

2.2.4. Functionality 04

Description of the functionality: For queries that provide no answers (or for all queries),
suggest related search terms in the same or other languages.
Fulfilled: Yes.
Implementation/use: This functionality is implemented using autocomplete in the search
box. As depicted in Figure 4, users can start writing a term and the system will provide
different options.

12

Autocomplete functionality in the search box

Figure 4. Screenshots of SILKNOW’s Thesaurus to test functionality 04.

2.2.5. Functionality 05

Description of the functionality: Searching the thesaurus for terms and accessing their
definition.
Fulfilled: Yes.
Implementation/use: Users have three different ways to search for terms: Alphabetically,
Using Hierarchy dropdown, or using the Search box. Examples of searching alphabetically
were shown in the previous examples, as part of Figures 1, 2 and 3. Examples of using a
search box were shown in Figures 3 and 4. An example of a search using the hierarchy
dropdown is given in Figure 5. In all these cases, clicking on the term opens up a dedicated
page with the description and other related information.

Example of the dedicated page for the term “Espolín” where a

description and related information is presented.

Figure 5. Screenshots of SILKNOW’s Thesaurus to test functionality 04, making use of the
Hierarchy to search options for the specific term “Espolín”.

13

2.2.6. Functionality 06

Description of the functionality: Giving the user the option to choose, in the Thesaurus, the
languages of the definitions, related terms and translations of these terms.
Fulfilled: Yes.
Implementation/use: This functionality is achieved by changing the language of the term to
be searched. This functionality is available by changing the selected value of the “Content
Language” dropdown. Examples are given in Figure 6.

Example of the term “Espolín” where a

description and related information is displayed
in English.

Example of the term “Espolín” (“Broccato” in

Italian) where a description and related
information is displayed in Italian.

Example of the term “Espolín” where a

description and related information is displayed
in French.

Example of the term “Espolín” where a

description and related information is displayed
in Spanish.

Figure 6. Screenshots of SILKNOW’s Thesaurus to test functionality 06.

2.2.7. Functionality 07

Description of the functionality: Visually browsing the thesaurus’ terms through dropdown
hierarchies.
Fulfilled: Yes
Implementation/use: The user interface presents a tab named “Hierarchy” where users can
browse, via dropdown controls, different aggregations and groups of terms. Examples are
provided in Figure 7.

14

Collapsed view of the hierarchy dropdown.

Expanded view of the hierarchy dropdown.

Figure 7. Screenshots of SILKNOW’s Thesaurus to test functionality 07.

2.2.8. Functionality 08

Description of the functionality: Linking SILKNOW data to other online resources such as
Europeana, Wikidata, IdRef, RAMEAU, Library of Congress authorities, etc.
Fulfilled: Yes.
Implementation/use: Each term page has a section for matching concepts provided by other
online resources such as Wikidata or AAT. Links are provided in order to explore the term in
those online resources. This is illustrated in Figure 8.

Related online resource links displayed on a term dedicated page.

Figure 8. Screenshots of SILKNOW’s Thesaurus to test functionality 08.

15

2.2.9. Functionality 09

Description of the functionality: Retrieving bibliographic references related to a record,
when available.
Fulfilled: Yes.
Implementation/use: For those records where bibliographic references are available, the
references are displayed on the term page alongside the rest of related information. An
example for the term “Warp (yarn)” is shown in Figure 9. As can be seen, this example involves
different bibliographic references.

Bibliographic references displayed at a term dedicated page.

Figure 9. Screenshots of SILKNOW’s Thesaurus to test functionality 09.

2.2.10. Discussion

Functional testing for SILKNOW’s Thesaurus shows very satisfactory results for all the
functionalities that were identified by SSH partners in the scope of WP2. All these
functionalities have been integrated and can be accessed via the public web application
enabling browsing of the SILKNOW Thesaurus.

 Stress testing

With the stress testing of SILKNOW’s Thesaurus Browser, we aim to determine its robustness
in producing the appropriate answer for the user. SILKNOW’s thesaurus browser offers a very
usable user interface to analyse vocabulary content. To this end, we have prepared some
experiments which consist of performing some interface actions using the four different
languages (English, Spanish, French and Italian) and increasing the number of concurrent
users. Our goal is to establish the number of concurrent users the current configuration can
handle before performing horizontal scale-up of the infrastructure. The experiments and the
hardware used are described in section 2.3.1. During the experiments we measured if the
server response is adequate. The way to measure if a response is adequate is explained in

16

2.3.2. The data gathered during the testing is provided in section. 2.3.3. An individual analysis
per type of test performed is presented in sections 2.3.4, 2.3.5 and 2.3.6. Finally, a general
analysis is discussed in section 2.3.7.

2.3.1. Test description

In order to perform the stress tests with the different APIs of the SILKNOW Thesaurus
Browser, we prepared an experiment to be completed by different users. To this end, we
defined a thread group made up of different numbers of users, namely 5, 10, 30 and 50 users
(Table 2). These users are simulated by the computer, i.e., they are not real users. Once the
users are defined, each of them launches a request in the four languages (English, Spanish,
French and Italian). In this way, we intend to measure the response of the tool regarding three
basic tasks:

● Searching: A request searching the term ‘damask’ in English, French, Spanish and
Italian. This test emulates the process performed by a user when searching for a term
in the thesaurus using the web user interface. This process is evaluated in the 4
languages: Searching “damasco” in Spanish activated “damask” in English,
“damasco” in Italian and “damas” in French. The results of this test are shown and
analysed in subsection 2.3.4.

● Alphabetical: This test emulates the process performed by a user when he/she clicks
on a concept in the alphabetical list (also damask) in order to obtain all the information
about a concept. Similarly, the request is repeated in English, French, Spanish and
Italian. The test performs an action of the type HTTP GET on a concept. The results of
this test are shown and analysed in subsection 2.3.5.

● Hierarchy: A request in English, French Spanish and Italian by clicking on the same
concept damask, but on the hierarchy. This test emulates the process followed by a
user when he/she clicks on a branch of the hierarchy in order to know what the
narrower and broader concepts of the ‘damask’ focused concept are. The test
performs a query, retrieving the narrower concepts to a general concept. The results
of this test are shown and analysed in subsection 2.3.6.

During the tests, all the thread group users execute their requests concurrently. Finally, when
the first iteration ends, it is repeated four times, i.e., each test is performed five times.

The same tests are executed using three different thesaurus access methods:

● SILKNOW’s Thesaurus Web Interface (SKOSMOS URI).
● SILKNOW‘s Thesaurus SILNOW Public API.
● SILKNOW’s Thesaurus SIKNOW SPARQL API.

In order to obtain more information about the different SILNOW Thesaurus APIs, deliverables
D6.3 and D6.4 can be consulted, where these APIs are widely described. The structure of the
thread groups and the requests performed are shown in Table 2. We also show the hour and
date when the tests were initiated.

Number of
users

Requests per
user

Times
repeated

Total
requests

Time and date

SILKNOW THESAURUS - SKOSMOS URI
5 Search: 4

Hierarchy: 4
5 100

100
2021-06-24T04:00:00+0000
2021-06-24T04:30:00+0000

17

Alphabetical: 4 100 2021-06-24T05:00:00+0000
10 Search: 4

Hierarchy: 4
Alphabetical: 4

5 200
200
200

2021-06-24T06:30:00+0000
2021-06-24T07:00:00+0000
2021-06-24T08:00:00+0000

30 Search: 4
Hierarchy: 4
Alphabetical: 4

5 600
600
600

2021-06-24T12:00:00+0000
2021-06-24T14:00:00+0000
2021-06-24T16:00:00+0000

50 Search: 4
Hierarchy: 4
Alphabetical: 4

5 1000
1000
1000

2021-06-24T18:00:00+0000
2021-06-24T20:00:00+0000
2021-06-24T22:00:00+0000

SILKNOW THESAURUS – SILKNOW PUBLIC API
5 Search: 4

Hierarchy: 4
Alphabetical: 4

5 100
100
100

2021-07-01T15:00:00+0000
2021-07-01T15:30:00+0000
2021-07-01T16:00:00+0000

10 Search: 4
Hierarchy: 4
Alphabetical: 4

5 200
200
200

2021-07-01T17:00:00+0000
2021-07-01T17:45:00+0000
2021-07-01T18:30:00+0000

30 Search: 4
Hierarchy: 4
Alphabetical: 4

5 600
600
600

2021-07-01T19:30:00+0000
2021-07-01T20:30:00+0000
2021-07-01T21:30:00+0000

50 Search: 4
Hierarchy: 4
Alphabetical: 4

5 1000
1000
1000

2021-07-02T01:00:00+0000
2021-07-02T02:30:00+0000
2021-07-02T04:00:00+0000

SILKNOW THESAURUS – SILKNOW SPARQL API
5 Search: 4

Hierarchy: 4
Alphabetical: 4

5 100
100
100

2021-07-02T05:00:00+0000
2021-07-02T05:30:00+0000
2021-07-02T06:00:00+0000

10 Search: 4
Hierarchy: 4
Alphabetical: 4

5 200
200
200

2021-07-02T06:30:00+0000
2021-07-02T07:30:00+0000
2021-07-02T08:30:00+0000

30 Search: 4
Hierarchy: 4
Alphabetical: 4

5 600
600
600

2021-07-02T10:00:00+0000
2021-07-02T11:30:00+0000
2021-07-02T13:00:00+0000

50 Search: 4
Hierarchy: 4
Alphabetical: 4

5 1000
1000
1000

2021-07-02T14:00:00+0000
2021-07-02T16:00:00+0000
2021-07-02T18:00:00+0000

Table 2. List of the different tests, requests and concurrent users per test in the different
SILKNOW’s Thesaurus APIs (SKOSMOS URI, SILKNOW Public, SPARQL).

Additionally, the tests were designed based on the following considerations:

● Sequence. The requests are sequentially performed per user. There is a random timer,
from 0 to 3 seconds between every request. Due to this, the second request could start
one second, two seconds, or three seconds after the previous request. So, the
maximum life of the user’s thread is 12 seconds for 4 requests, plus the response time
of the performed requests.

● Delay. The ramp-period value, which defines the delay to the next user thread starting,
is defined in each test to wait 3 seconds before the next user performs the first request.
So, when a user launches the first request, the first request of the next user is
performed three seconds later.

To clarify the process, Figure 10 depicts a test execution sample for users I, II and III. As can
be seen, user I launches three requests. The time required to execute each request is the
elapsed time associated with the request, and a random timer (0-3 seconds) per request. So,
user II starts the first request after user I starts his/her first query and passes the ramp-up

18

period (3 seconds). Finally, user III starts the first query after user II starts his/her first query
and passes the ramp-up period (3 seconds from user II, and 6 seconds from user I).

Figure 10. A request execution sample for users I, II and III in a thread group of 5 users.

The hardware configuration that supports the APIs services is described as follows:

● CPU: Intel Xeon L5640, 2.26 GHz, 12 cores (24 threads).
● RAM: 128 GB.
● Operating System: Linux Debian Buster, kernel 4.12.0.

The Knowledge Graph is hosted in a Virtuoso Docker replicated in a twin component. A load
balancer between the two images is used to distribute the server load.

The client system where the tests were executed has the following characteristics:

● CPU: Intel i5-6400 CPU @ 2.70GHz.
● RAM: 8GB.
● Operative System: Linux Fedora 7.0.

The tests were launched from the JMeter tool [4] using OpenJDK Java 1.8. We used this tool
because of the API features and the test requirements which make Apache JMeter an
appropriate tool to perform such tests [5].

19

2.3.2. How to evaluate the result of a request

In this section, we explain how we measure and define if a response is adequate. In order to
evaluate the response generated by the server, the JMeter tool allows the definition of one, or
many, Response Assertions. Specifically, in the thesaurus test there were two kinds of
response assertion defined per request:

● Response 1. The first response checks that there were no basic HTTP Errors, or
Exceptions. It checks that response headers contain the string “HTTP/1.1 200 OK”.
When an unexpected error page, or exception page, is generated from the server this
content is not present in the response headers.

● Response 2. The second one checks that the response text contains terms that
appear in the normal response. For instance, searching for the term “damask” in
English the response assertion checks that the following terms are present in the
response text:

o Damask
o Damask dress fabric.

The first response assertion is the same for all the requests performed in the test, while the
second response assertion is also present in all the tests, but the terms change according to
the request. Table 3 enumerates the tests and requests, and the expected response text for
each of them. Therefore, if we obtain a different term from the ones expected, we assume that
the result of a request is wrong.

Test Request Expected terms in
response text

Search English, Damask Damask, Damask
dress fabric

Spanish, Damasco Damasco, Damasco
de vestido

French, Damas Damas, Damas robe
Italian, Damasco Damasco, Damasco

bicolore
Alphabetical Get the concept Acanthus (English) Acanthus,

Vegetal Motif
Get the concept Acanto (Spanish) Acanto

Motivo vegetal
Get the concept Acanthe (French) Acanthe

Motif végétal
Get the concept Acanto (Italian) Acanto

Motivo vegatale
Hierarchy Get narrower terms in English to the concept with URI

http://vocab.getty.edu/aat/300264090
Aceytuni, Batik

Get narrower terms in Spanish to the concept with URI
http://vocab.getty.edu/aat/300264090

Aceituní, Batik

Get narrower terms in French to the concept with URI
http://vocab.getty.edu/aat/300264090

Aceituni, Batik

Get narrower terms in Italian to the concept with URI
http://vocab.getty.edu/aat/300264090

Aceituni, Bathik

Table 3. Expected terms in the response text, per request, in order to be accepted.

20

2.3.3. Gathered data during the tests

As introduced above, in this section we show the data gathered during the tests which will
then be analysed in subsections 2.3.4, 2.3.5 and 2.3.6. Tables 4, 5 and 6 give a summary of
the results of the tests, where the values presented are the average of the elapsed time per
request and type of test, and the percentage of fails per request and type of test. Regarding
the “fails percentage”, we measure if the response text is exactly the one that we expected,
as explained in section 2.3.2 and summarized in Table 3. Therefore, a result of “0” for this field
means that all the response texts for a certain test are correct.

Table 4. Results of the test performed with SILKNOW’s Thesaurus Browser with the

SKOSMOS URI. The table contains the average of the elapsed time per request and type of
test, as well as the percentage of fails per request and type of test.

21

Table 5. Results of the test performed with SILKNOW’s Thesaurus Browser with the

SILKNOW Public API. The table contains the average of the elapsed time per request and
type of test, as well as the percentage of fails per request and type of test.

22

Table 6. Results of the test performed with SILKNOW’s Thesaurus Browser with the

SILKNOW SPARQL API. The table contains the average of the elapsed time per request and
type of test, as well as the percentage of fails per request and type of test.

2.3.4. SKOSMOS URI

2.3.4.1. Results and analysis for SEARCH tests SKOSMOS URI

Figure 11 shows a graphic with the mean of the elapsed time and the fails percentage per
request in the test with 5, 10, 30, and 50 concurrent users, elaborated with the data presented
in Table 4 for the SEARCH tests in the SKOSMOS URI. Overall, we can assess that the stress
tests related to the search term process in the thesaurus obtain good results in the average of
the elapsed time per request. Overall, we observe that the elapsed time increases as the
number of users increases, which is normal because the server is working with more
requests. For Spanish, Italian and English, the mean value of this time is very close to one
second, even with 50 concurrent users. On the other hand, greater values are obtained for
French, as the mean time is up to 4 times longer (with 50 concurrent users) than for the other

23

languages. This fact can be related to the execution order of the queries. Retrospectively, we
should probably have shuffled the order of languages between each test to neutralize the
caching effect.

Figure 11. Mean of the elapsed time per request searching for a term in different languages

with tests with 5,10,30 and 50 concurrent users with the SKOSMOS URI. The numerical
values depicted on each column represent the fails percentage for the corresponding

request.

The percentage of fails in this test is very low. The maximum value is reached for the test with
50 concurrent users for Spanish (20.4%). As an average, this value is 10.1% for 50 concurrent
users, and 0.2% with 30 concurrent users, while the rest of the tests had no fails.

The recommended number of concurrent users executing this task is 30, given the current
server configuration.

2.3.4.2. Results and analysis for ALPHABETICAL tests (Get concept) with SKOSMOS

URI

Figure 12 shows a graphic with the mean of the elapsed time and fails percentage per request
in the test with 5, 10, 30, and 50 concurrent users, elaborated with the data presented in Table
4 for the ALPHABETICAL tests in the SKOSMOS URI. As can be seen, the average of the
elapsed time per request with 5 and 10 concurrent user tests was close to 5 seconds per
request, but it was a little bit longer with 30 concurrent users, as it took 10 seconds per
request, and worse with 50 users, taking more than 15 seconds per request. As expected, the
elapsed time increased with an increasing number of users. Overall, we can say that the
ALPHABETICAL stress tests, which requests getting the information about a concept, obtains
reasonable results through the SKOSMOS URI for 5 and 10 users, but with 30 and 50
concurrent users the tool’s performance is not adequate for a good user experience given the
current server configuration.

24

Figure 12. Mean of the elapsed time per request Get CONCEPT (alphabetical) list in different

languages with 5, 10, 30 and 50 concurrent users with the SKOSMOS URI. The numerical
values depicted on each column represent the fails percentage for the corresponding

request.

The percentage of fails is also greater in the tests with 50 concurrent users, reaching an
average of 20%. In the tests with 30 concurrent users, the average percentage of fails is 2.5%.
For the rest of the tests, the average percentage of fails remains low, mostly 0%.

The recommended concurrent users executing this task is 10, given the current server
configuration.

2.3.4.3. Results and analysis for HIERARCHY tests (query for getting the narrower

concepts) with SKOSMOS URI

Figure 13 shows a graphic with the mean of the elapsed time and the fails percentage per
request in the test with 5, 10, 30 and 50 concurrent users, elaborated with the data presented
in Table 4 for the HIERARCHY tests in the SKOSMOS URI.

25

Figure 13. Mean of the elapsed time per request getting the narrower concepts with 5, 10, 30

and 50 concurrent users with the SKOSMOS URI. The numerical values depicted on each
column represent the fails percentage for the corresponding request.

Overall, the stress tests related to getting the narrower term to a concept in the thesaurus
achieved poor results when using the SKOSMOS URI. As can be seen, the elapsed time
increases as the number of users increases. With 5 and 10 concurrent users, the mean of the
elapsed time is greater than 12 second per request, which is a higher value than the ones
obtained with the other APIs. With 30 concurrent users, this time is close to 20 seconds per
request, and 30 seconds with 50 concurrent users.

Regarding the values obtained for the percentage of fails, they were very good for tests with
5, 10 and 30 concurrent users, as the average reaches a maximum of 1% for 30 users.
However, with 50 concurrent users, the tool cannot manage the request frequency, as the
average percentage of failures reaches 98%, probably due to the timeout of the SKOSMOS
internal API.

To sum up, the current server configuration can manage up to 30 concurrent users with an
acceptable number of failures. However, the response time is long, close to 20 seconds. This
time is not acceptable for a good user experience. Therefore, we recommend 10 users as the
maximum number of concurrent users in this case, and we note that this access method
should be optimized to improve user experience.

2.3.5. SILKNOW PUBLIC API

2.3.5.1. Results and analysis for SEARCH tests with SILKNOW public API

Figure 14 shows a graphic with the mean of the elapsed time and the fails percentage per
request in the test with 5, 10, 30, and 50 concurrent users, built from the data presented in
Table 5 for the SEARCH tests using the SILKNOW public API. As can be seen, all the obtained
values for the elapsed time are lower than 2.5 seconds, and therefore in all cases they are
acceptable for a good user experience.

26

Figure 14. Mean of the elapsed time per request searching for a term in different languages

with tests with 5, 10, 30 and 50 concurrent users with the SILKNOW Public API. The
numerical values depicted on each column represent the fails percentage for the

corresponding request.

Overall, the stress tests related to the search term process in the thesaurus achieved good
results for the average elapsed time per request. The tests performed on Spanish, Italian and
French have an average time value of very close to one second. Only the tests with 10
concurrent users have a value a bit longer than 2 seconds for Spanish. If this exceptional
result in the test with 10 concurrent users in Spanish is not taken into account, since it could
be due to external traffic or network conditions, we can assume that the number of users is
not very important for the results of the tests, at least up to 50 concurrent users. All the tests
executed with requests in English have values between 1 and 2 seconds. These requests are
the first ones executed, and the caching system makes the rest of them require less time.

The retrieved values of the percentage of fails are also reasonable. 45% of the tests have no
fails, and the rest of the values are lower than 4%, with the only exception being the test with
the Italian query for 5 concurrent users, which has a fail percentage value of 8%.

The recommended number of concurrent users executing this task is 50, with a similar
hardware configuration to the one used in these tests.

2.3.5.2. Results and analysis for ALPHABETICAL tests (Get concept) with SILKNOW

public API

Figure 15 shows a graphic with the mean elapsed time and the fails percentage per request
in the test with 5, 10, 30, and 50 concurrent users, prepared with the data presented in Table
5 and for the ALPHABETICAL tests using the SILKNOW public API. As can be seen, all the
gathered data had low values. As an average, the results with English requests are a bit higher
than the results of the tests with the other languages. This is due to the caching system of the
API, but the values are still under 1.6 seconds. Therefore, it is safe to say that for all cases the
values retrieved from the tests are adequate for a good user experience.

27

Figure 15. Mean of the elapsed time per request searching for a term in different languages

with tests with 5, 10, 30 and 50 concurrent users with the SILKNOW Public API. The
numerical values depicted on each column represent the fails percentage for the

corresponding request.

The percentages of fails in this test are very low. Most of the requests have no failures; only in
5 of the requests do we find values with some fails, with a maximum of 2.6%.

2.3.5.3. Results and analysis for HIERARCHY tests (query for getting the narrower

concepts) with SILKNOW Public API

Figure 16 shows a graphic with the mean of the elapsed time and the fails percentage per
request in the test with 5, 10, 30, and 50 concurrent users, elaborated with the data presented
in Table 5 and for the HIERARCHY tests using the SILKNOW public API. As in the previous
set of tests, the delays with the English requests are a bit longer due to the caching system of
the API. However, as can be seen, all obtained data have elapsed time values below 1.6
seconds, even with 50 concurrent users, which is a low value. Therefore, results are
satisfactory for a good user experience, in all cases.

Figure 16. Mean of the elapsed time per request searching for a term in different languages

with tests with 5, 10, 30 and 50 concurrent users with the SILKNOW Public API. The
numerical values depicted on each column represent the fails percentage for the

corresponding request.

28

The percentage of fails in these tests is also very low. Only 7 of the tests show fail values, while
the maximum fails percentage value is 2%. The rest of tests had no fails.

The recommended number of concurrent users executing this task is, again, 50 with a similar
hardware configuration to that used in these tests.

2.3.6. SILKNOW SPARQL API

2.3.6.1. Results and analysis for SEARCH tests with SILKNOW SPARQL API

Figure 17 shows a graphic with the mean of the elapsed time and the fails percentage per
request in the test with 5, 10, 30, and 50 concurrent users, prepared with the data presented
in Table 6 using the plain SPARQL API. The elapsed time increased as the number of users
increased, but still with very low values (with a maximum of 507ms). As with the previous tests,
the English values required a longer time than other languages due to the caching system. As
all the retrieved values are in the margin of 0.5 seconds, or lower, all of them provide a good
user experience.

Figure 17. Mean of the elapsed time per request searching for a term in different languages

with tests with 5, 10, 30 and 50 concurrent users with the SILKNOW SPARQL API. The
numerical values depicted on each column represent the fails percentage for the

corresponding request.

The percentage of fails in this test were also low. Only one test reached a failure percentage
value of 4%. The remaining tests that showed failure values (a total of 6 tests) have values
lower than 2%.

The recommended number of concurrent users executing this task can go up to 50 (and
probably more) with the same hardware configuration as that used in these tests.

29

2.3.6.2. Results and analysis for “Alphabetical” tests (Get concept) with SILKNOW

SPARQL API

Figure 18 shows a graphic with the mean of the elapsed time and the fails percentage per
request in the test with 5, 10, 30, and 50 concurrent users, built from the data presented in
Table 6 using the SPARQL API. As can be seen, the average elapsed time is always lower
than 1.6 seconds, even with 50 concurrent users. So, with these elapsed times the users’
experience can be safely assumed to be very good.

Figure 18. Mean of the elapsed time per request searching a term in different languages with
tests with 5, 10, 30 and 50 concurrent users with the SILKNOW SPARQL API. The numerical

values depicted on each column represent the fails percentage for the corresponding
request.

The percentage of fails in this test is very low. Only in 7 of the tests are some values above
0%, but they are all lower than 4%. The remaining requests have no fails.

The recommended number of concurrent users executing this task is 50, with the same
hardware configuration as the one used in these tests.

2.3.6.3. Results and analysis for “hierarchy” tests (query for getting the narrower

concepts) with SILKNOW SPARQL API

Figure 19 shows a graphic with the mean of the elapsed time and the fails percentage per
request in the test with 5, 10, 30, and 50 concurrent users, prepared with the data presented
in Table 6 using the SPARQL API. In this case, the average elapsed time is always lower than
0.5 seconds, even with 50 concurrent users. Therefore, we can assure a very satisfactory user
experience.

30

Figure 19. Mean of the elapsed time per request searching for a term in different languages

with tests with 5, 10, 30 and 50 concurrent users with the SILKNOW SPARQL API. The
numerical values depicted on each column represent the fails percentage for the

corresponding request.

The percentage of fails in this test is very low. Only 6 tests failed, and the percentage values
of fails are lower than 2.4%; the remaining requests have no fails.

In a similar way to the other tests performed for the SPARQL API, the recommended number
of concurrent users executing this task is 50 with the same hardware configuration as that
used in these tests.

2.3.7. Discussion

In the previous subsections (2.3.4.1 to 2.3.4.3), we analysed the results for the three tasks
using SKOSMOS as the thesaurus access method. In this section, we further comment about
the performance of using an API (this being the plain SPARQL API or the SILKNOW API) to
access the thesaurus. While SKOSMOS is targeted at end users using a Web browser to
search and browse the thesaurus, the API access is targeted at third party integrators looking
to re-use the thesaurus.

The different tasks we have considered yield different results regarding the average elapsed
time and the fails percentage. The best results are obtained for the SEARCH term tests that
are optimized, regardless of the access method. Given the current hardware configuration,
we can recommend up to 30 concurrent users using SKOSMOS and 50 concurrent users, or
more, using an API. The two other tasks (getting details about a concept and getting narrower
/ broader concepts of a given concept) are more complex. While the two API access methods
can handle these tasks well with up to 50 users, SKOSMOS performs worse. We recommend
limiting the number of concurrent users to 5 using SKOSMOS for these two tasks, given the
current hardware configuration. Improvements can naturally be obtained using horizontal
scale-up of the infrastructure (i.e., adding more servers to the load balancer). We also
recommend further optimizing the SKOSMOS software which can probably optimize these
tasks better.

31

3. ADASILK

 Description of ADASilk

ADASilk is a web-based search application that aims to provide access to the data stored in
the Knowledge Graph (KG) through a public RESTful API. This API is developed and
documented using:

● Grlc, a service for generating a web API from SPARQL queries which are versioned in
a Git repository.

● SPARQL Transformer, a library that rewrites the output of SPARQL queries in a more
suitable format for web development.

The user interface of the web application is developed using React, one of the most popular
front-end Javascript libraries. The API is used to perform requests to the Knowledge Graph,
the result is then rendered as HTML and sent to the users’ browsers.

 Evaluation of the functionalities identified by SSH experts

As given in the introduction section, the functionalities that should be offered by ADASilk were
identified by SSH partners in the scope of WP2. From the table that they elaborated with the
description of functionalities, in Table 7 we present those related to ADASilk. As can be seen,
a total of 26 functionalities are identified. Similar to SILKNOW’s Thesaurus Browser (Table 1),
the table includes examples and additional comments to better explain the functionalities that
the tool should bring, as well as to what user profiles or “personas” and sectors this can be of
relevance. To this table, we have added a last column, in grey, that summarizes the results of
the functionality evaluation which are presented in the following subsections (3.2.1 to 3.2.26).
This functional evaluation aims to show which functionalities are successfully integrated into
ADASilk and how this integration is achieved. Finally, a discussion is given (in 3.2.27).

Functionali
ty ID

Description of the
functionality

Examples,
additional
comments

Personas Sectors Fulfilled?

General functionality: Having access to a more personalized experience

01 Having a personal account

All All Yes

02 Being able to save favorite
images

 Design student Research
and
Education

 Yes

03 Being able to create and
share a personal selection
of items, kind of a curated
exhibition

 Yes

04 Having access to
information about the last
updates and the new
materials

A list of new
additions and
changes to the
repository

All All Not yet

05 Making all our web
resources responsive to all

 All All Yes

32

user devices
(desktop/laptop, tablet,
smartphone)

06 Choosing the language All All Yes

General functionality: Searching

07 Using a simple search
interface

Based on
metadata (text-
only)

All All Yes

08 Using an advanced search
interface and filtering
results with facets

 All All Yes

09 Using an advanced search
interface and filtering
results with facets:
historical period and/or
geographical origin

 Visitor
Fan of fashion

Cultural
heritage and
leisure

 Yes

Student in
textile history
and
technology

Research
and
Education

Fashion
journalist

10 Using an advanced search
interface and filtering
results with facets:
weaving techniques and
fabrics

 Middle-aged
museum visitor

Cultural
heritage and
leisure

 Yes

All Research
and
Education

11 Using an advanced search
interface and filtering
results with facets: motifs,
decorative patterns

 All All Yes

12 Make a query based on a
single image, uploaded by
the user, or one selected
in the repository. Give the
option to include metadata
analysis (as all of the
above) or to search only
by visual similarity.

It would apply only
to textiles with a
limited range of
colors or shades
(damasks, for
instance). One
alternative
example:
https://www.europ
eana.eu/portal/fr/
explore/colours.ht
ml

Designers and
design
students

Creative and
textile
industries

 Yes

General functionality: Finding and visualizing

33

13 Sorting the results by field
(alphabetical order for text
fields, asc or desc order
for numerical or date
fields) and also with facets
(such as “by country”)

All All Yes

14 Using a zoom tool for
visualization

 All All Yes

15 Provide the user with a link
(when available) back to
the online catalogue of the
owning institution, to get
more information, etc.

Only possible in
cases when
records already
have permanent
identifiers in the
owning
institution’s
website.

All All Yes

16 Being able to find other
SILKNOW related records
by clicking on keywords or
CHIs or authors… etc.

As in any OPAC or
online catalog.

College
student

 Yes

17 Being able to find other
SILKNOW records of
related objects (clickable
list of related records, if
this information was
included in the original
records)

For instance,
when a textile is
part of a larger
ensemble of more
pieces, and the
user wants to
recover the entire
ensemble.

 Yes

18 Having access to the
name of the owning
institution in the record
and being able to click on
their names for more
information (location,
contacts…).

 Museum
curator

 Not yet

19 Clicking on a weaving
technique in order to
access a detailed analysis
of it in the Virtual Loom,
when available

 Fashion
student
Museum
director

Research
and
Education

 Yes

General functionality: Downloading

20 Querying our database
through an API, not just
through a web interface

 Museum
curator

Research
and
Education

 Yes

21 Downloading a list of
selected results with a
standard, basic set of
metadata

 Museum
curator

Research
and
Education

 Yes

34

22 Downloading individual
search results (one
record) in the format
chosen by the user: image
only in bitmap format (jpg,
png, etc.), metadata only,
entire record (pdf, csv,
rtf…), etc.

 Visitor,
conservator

Cultural
heritage and
leisure

 Yes

Student Research
and
Education

General functionality: Sharing

23 Being able to share
content (one single record)
on social networks (e.g.
Facebook, Instagram,
Pinterest…), by email, with
a URL.

 All All Yes

24 Being able to share
multiple content: (a query,
a user selection of
records, etc) by the same
procedures as above
(social media, email, URL,
etc.).

 All All Yes

25 Providing the user with
clear information about
the licences / authors’
rights applied on the
images and what is
possible to do or not with
them.

 All All Yes

General functionality: Contacting

26 Being able to contact the
SILKNOW project

Via email, or a
contact form

All All Yes

Table 7. List of the functionalities that ADASilk should fulfil according to SSH partners, and
their relation to personas and sectors that were identified in D2.4. The last column, in grey,

summarizes the outcomes of the functionality evaluation.

3.2.1. Functionality 01

Description of the functionality: Having a personal account.
Fulfilled: Yes.
Implementation/use: Users can sign into ADASilk via different options, namely, Google,
Facebook and Twitter. An example is shown in Figure 20, where a user has access to the
logging options after clicking the button “PROFILE”.

35

On the main page of ADASilk, in the top right corner, there is a button

called “PROFILE” that users can click on to register.

Detail of the button

PROFILE. When it is
pressed, a “Sign in”
label is displayed.

Options that can be used to sign in.

Figure 20. Screenshots of ADASilk to test functionality 01.

3.2.2. Functionality 02

Description of the functionality: Being able to save favorite images.
Fulfilled: Yes.
Implementation/use: When displaying individual objects in ADASilk users can select to
download any images they wish.

For a given object, selecting “Download” displays a menu with

different options, one being “Download selected images”.

Figure 21. Screenshots of ADASilk to test functionality 02.

36

3.2.3. Functionality 03

Description of the functionality: Being able to create and share a personal selection of
items, a kind of curated exhibition.
Fulfilled: Yes.
Implementation/use: When users are registered in ADASilk, they can create their own list of
objects and then share them through different media such as Facebook, Twitter, Whatsapp,
LinkedIn, email, etc.

Saving one object to a new list. The user writes

the name of the list.

Once the list is created, users can add objects
to the list. In the example, the user has three
lists, namely crown, flower and birds. In this
case, the object is added to the list “birds”.

Users can have access to each of the created

lists and share them by pressing the button .

In this image, the sharing options are

displayed. A total of nine options are available
for sharing.

Figure 22. Screenshots of ADASilk to test functionality 03.

3.2.4. Functionality 04

Description of the functionality: Having access to information about the latest updates and
the new materials.
Fulfilled: Not yet implemented.

37

Implementation/use: Although this functionality has not yet been implemented, it is feasible
to do so in the scope of the project. To this end, we will integrate a “History” menu into ADASilk
showing when the various museums have been gradually added to the KG.

3.2.5. Functionality 05

Description of the functionality: Making all our web resources responsive to all user devices
(desktop/laptop, tablet, smartphone).
Fulfilled: Yes.
Implementation/use: ADASilk is prepared to be used on standard devices (desktop/laptop,
tablet, smartphone) and making use of most browsers (Chrome, Safari, Edge, etc.). A few
examples are shown in Figure 13, where the same action, filtering by depiction/birds, is
applied on different devices and browsers, also involving different operating systems.

Interacting with ADASilk using an iPad and the

Google Chrome browser.

Interacting with ADASilk using an Android

mobile phone and the Google Chrome browser.
As can be seen, users can show (left image) or

hide (right image) the filters.

Interacting with ADASilk using a laptop
(MacBook Pro) and the Brave browser.

Interacting with ADASilk using a laptop
(MacBook Pro) and the Safari browser.

38

Interacting with ADASilk using a desktop

computer (Windows OS) and the Google Chrome
browser.

Interacting with ADASilk using a desktop

computer (Windows OS) and the Edge
browser.

Figure 23. Screenshots of ADASilk to test functionality 05.

3.2.6. Functionality 06

Description of the functionality: Choosing the language.
Fulfilled: Yes.
Implementation/use: By default, ADASilk’s user interface is shown in English; however,
Spanish, French and Italian are also integrated so users can choose how to see the interface
menus. An example is shown in Figure 24.

ADASilk in English.

ADASilk in Spanish.

39

ADASilk in French.

ADASilk in Italian.

Figure 24. Screenshots of ADASilk to test functionality 06.

3.2.7. Functionality 07

Description of the functionality: Using a simple search interface.
Fulfilled: Yes.
Implementation/use: Text-based filtering is integrated into ADASilk, so users can type a free
text. While the user is typing, the system remembers previous searches and also delivers
results in real time. This is depicted in Figure 25.

The user types “floral”, and the system returns
suggestions of specific objects that meet that

characteristic.

If the user keeps typing, completing the search
with “floral motif”, the system will suggest other

objects that meet both terms.

Figure 25. Screenshots of ADASilk to test functionality 07.

40

3.2.8. Functionality 08

Description of the functionality: Using an advanced search interface and filtering results
with facets.
Fulfilled: Yes.
Implementation/use: On the OBJECTS page of ADASilk, text-based filtering is integrated so
users can type a free text. While the user is typing, the system remembers previous searches
and also delivers results in real time.

An example showing a free text search for “damask”. While the user is typing, the system

remembers previous searches and also delivers results in real time, so for the word “damas”
(left image) it already shows results.

Figure 26. Screenshots of ADASilk to test functionality 08.

3.2.9. Functionality 09

Description of the functionality: Using an advanced search interface and filtering results
with facets: historical period and/or geographical origin.
Fulfilled: Yes.
Implementation/use: In ADASilk’s filtering options, the fields “Production time” and
“Production place” are considered. For the former, the time is divided into centuries. While for
the latter, the place has different granularities, from continents to countries or regions. For
each field, one or different options can be selected. Selecting different options for a single
field results in an OR operation, whilst selecting different filters results in an AND operation.
Examples are shown in Figure 27.

41

Some of the options
to choose in the
field “Production
time”. As can be
seen, time is
divided into
centuries.

Some of the
options to
choose in the
field “Production
place”. As can
be seen, places
have different
granularities:
continents (e.g.,
Europe),
countries (e.g.,
France), regions
(e.g., Ávila).

Example of filtering by Production time/18th

century. Example of filtering by Production place/Italy.

Example of filtering by Production time/18th

century and Production place/Italy.

Example of filtering by Production time/18th
century, and Production place/Italy or France.

Figure 27. Screenshots of ADASilk to test functionality 09.

3.2.10. Functionality 10

Description of the functionality: Using an advanced search interface and filtering results
with facets: weaving techniques and fabrics.
Fulfilled: Yes.
Implementation/use: In ADASilk’s filtering options, there is the field “Technique” which
allows users to filter by a selected technique. On the one hand, to filter objects by fabric, two
options are implemented. On the other hand, users can filter by “Type of objects/fabrics”.

42

There is also a specific tab option that indicates “only fabric” to be considered in the graphical
interface. Examples are shown in Figure 18. Like in other filters, selecting different options for
a single field results in an OR operation, while selecting different filters results in an AND
operation.

Some of the
techniques
that users
can select in
the field
“Technique”.

Selecting
“fabrics” in the
field “Type of
object”.

Interface for the option to

filter by “only fabric”.

Example of filtering by type of object/fabrics.

Example of filtering by “only fabric”.

43

Example of filtering by Technique/Brocatelle.

Example of filtering by Technique/Brocatelle

and Type of object/fabrics.

Figure 28. Screenshots of ADASilk to test functionality 10.

3.2.11. Functionality 11

Description of the functionality: Using an advanced search interface and filtering results
with facets: motifs, decorative patterns.
Fulfilled: Yes.
Implementation/use: Users can filter by motives and/or decorative patterns with “Depiction”.
Examples are shown in Figure 29.

Selecting the term
“crown” in Depiction.

If a user starts writing
a word, e.g., “motif”,
only the related terms
will be displayed.

44

Example of filtering by Depiction/Crown.

Example of filtering by Depiction/Floral motif.

Figure 29. Screenshots of ADASilk to test functionality 11.

3.2.12. Functionality 12

Description of the functionality: Make a query based on a single image uploaded by the
user, or one selected in the repository. Give the option to include metadata analysis (as all of
the above) or to search only by visual similarity.
Fulfilled: Yes.
Implementation/use: From the main page of ADASilk, the user can upload an image of
choice and carry out a search by image. She/he can ask for either visually similar images or
objects with similar properties. This is shown in Figure 30.

On the main page of ADASilk, after pressing the

icon a menu appears where users can drag
and drop any image.

Image that the user uploads to find other similar

objects. Source:
https://collection.cooperhewitt.org/objects/18569441/

45

Results given by the system for visually similar images.

Results given by the system for objects with similar properties.

Figure 30. Screenshots of ADASilk to test functionality 12.

3.2.13. Functionality 13

Description of the functionality: Sorting the results by field (alphabetical order for text fields,
ascending or descending order for numerical or date fields) and also with facets (such as “by
country”).

46

Fulfilled: Yes.
Implementation/use: The terms included in each facet are sorted by order. Examples of this
have been shown in e.g., Figure 19. After filters are applied, the results can be sorted by
production time, production place, material, technique, depiction or type of object. Examples
can be seen in Figure 31.

Options implemented in ADASilk in order to sort

the results.

Example of sorting by Production time for the

search Technique/Damask.

Example of sorting by Technique for the search

Technique/Damask.

Example of sorting by Depiction for the search

Technique/Damask.

Figure 31. Screenshots of ADASilk to test functionality 13.

47

3.2.14. Functionality 14

Description of the functionality: Using a zoom tool for visualization.
Fulfilled: Yes.
Implementation/use: When accessing a single object that has at least one image, users can
open the image in a new window and apply zoom “+” and “-”. This is exemplified in Figure 32.

Example of an object that has two images. The

user selects the second image.

Double click on the image makes it open in a

new window. In the top right corner, the zoom
options are seen.

Applying one level of zoom “+”.

Applying two more levels of zoom “+” reaches

the maximum zoom. At this point, only the
zoom “-” can be used.

Figure 32. Screenshots of ADASilk to test functionality 14.

3.2.15. Functionality 15

Description of the functionality: Provide the user with a link (when available) back to the
online catalogue of the owning institution to get more information, etc.
Fulfilled: Yes.
Implementation/use: When entering a single object in the description, ADASilk provides the
link to the website of the owning institution. A pair of examples are given in Figure 33.

48

Example of an object that belongs to the Victoria

and Albert Museum. A clickable label that
redirects to the museum’s webpage can be seen

below the object.

Example of an object that belongs to the Centre

de Documentació i Museu Textil – CMDT. A
clickable label that redirects to the museum’s

webpage can be seen below the object.

Figure 33. Screenshots of ADASilk to test functionality 15.

3.2.16. Functionality 16

Description of the functionality: Being able to find other SILKNOW related records by
clicking on keywords or CHIs or authors, etc.
Fulfilled: Yes.
Implementation/use: For a given object, a set of clickable labels are listed that lead users to
related objects. Examples are shown in Figure 34.

Example of an object (left) and detail of the clickable labels (right).

49

Results after clicking the label “costume”.

Results after clicking the label “Theatre and

Performance Collection”.

Figure 34. Screenshots of ADASilk to test functionality 16.

3.2.17. Functionality 17

Description of the functionality: Being able to find other SILKNOW records of related
objects (clickable list of related records if this information was included in the original records).
Fulfilled: Yes.
Implementation/use: ADASilk implements the possibility of looking for related objects which
have visually similar images, or objects with similar properties. An example of how to do this
is given in Figure 35.

For a given object, the user can press the button
“View similar”, and two options appear; so

he/she can choose between visually similar
images or objects with similar properties.

An example of an object for which the user wants to

see visually similar images and/or objects with
similar properties.

50

Results for visually similar images.

Results for objects with similar properties.

Figure 35. Screenshots of ADASilk to test functionality 17.

3.2.18. Functionality 18

Description of the functionality: Having access to the name of the owning institution in the
record and being able to click on the names for more information (location, contacts, etc.).
Fulfilled: Not yet implemented.

51

Implementation/use: This functionality will be implemented in the scope of the project. To
this end, we will include the contact details of the owning institution, apart from the link to
their online catalogue (refer to functionality 15).

3.2.19. Functionality 19

Description of the functionality: Clicking on a weaving technique in order to access a
detailed analysis of it in the Virtual Loom, when available.
Fulfilled: Yes.
Implementation/use: Any ADASilk object that has an image can be automatically uploaded
to Virtual Loom. Once in Virtual Loom, the tool suggests a technique (the actual technique of
the object, if known), so the user can select it if it is integrated into Virtual Loom. This is done
in this way because, on the one hand, Virtual Loom has a limited number of weaving
techniques compared to all the possible techniques and variations and, on the other hand,
any image can be woven using any of the implemented techniques. Therefore, we do not limit
the use of Virtual Loom to only those fabrics that have a technique integrated into Virtual
Loom. An example is given in Figure 36.

Example of an object that has the technique “damask”. In order to upload the image into

Virtual Loom the user has to press the button .

52

Virtual Loom suggests “damask” as a technique, as this technique is integrated into Virtual

Loom. The user decides to use the suggested technique to produce a 3D model.

Figure 36. Screenshots of ADASilk to test functionality 19.

3.2.20. Functionality 20

Description of the functionality: Querying our database through an API, not just through a
web interface.
Fulfilled: Yes.
Implementation/use: ADASilk deploys a public RESTful API. An external application can
query the Knowledge Graph through this API, without authentication. In order to check this
functionality, it is only necessary to invoke the API through a REST client and process the
JSON file returned. As an example, we use a query to get the results of all the pieces created
in Italy. This query is:

https://grlc.eurecom.fr/api-
git/silknow/api/obj_list?location=Italy&endpoint=http%3A%2F%2Fdata.silknow.org
%2Fsparql

This query is typed as a GET command in the Mozilla extension RESTClient (Figure 37), and
the response contains a JSON file with the same results as the web user interface.

The command generated by RESTClient is the following:

curl -X GET -k -i 'https://grlc.eurecom.fr/api-
git/silknow/api/obj_list?location=Italy&endpoint=http%3A%2F%2Fdata.silknow.org
%2Fsparql'

53

Figure 37. Screenshots of ADASilk to test functionality 20.

3.2.21. Functionality 21

Description of the functionality: Downloading a list of selected results with a standard, basic
set of metadata.
Fulfilled: Yes.
Implementation/use: Users who are registered in ADASilk can create lists of objects (recall
functionality 03), which can be downloaded. This is exemplified in Figure 38, where a user has
a list called “birds” which contains four objects and downloads the list.

54

In this image, a list called “birds” is depicted,

which contains four items. In the “Operations”
section, there is a “Download” button that allows
the user to download the data related to such a

list.

Downloading the data of a list produces a zip file
with the name of the list (in this case, “birds.zip”).
It contains one folder for each one of the objects

with the image(s), a CSV file and a JSON file.
Additionally, there is also a CSV and a JSON file

for the list itself.

Screenshot of the CSV file for the list of objects.

Screenshot of the JSON file for the list of objects.

Figure 38. Screenshots of ADASilk to test functionality 21.

55

3.2.22. Functionality 22

Description of the functionality: Downloading individual search results (one record) in the
format chosen by the user: image only in bitmap format (jpg, png, etc.), metadata only, entire
record (pdf, csv, rtf), etc.
Fulfilled: Yes.
Implementation/use: For each individual object integrated into ADASilk, users can choose
between different options for downloading the related information, namely: “Virtual Loom”,
which downloads a JSON file that contains the information relevant for Virtual Loom; “Linked
Data JSON”, which downloads a JSON file with all the information related to said object; and
“Download selected image”, which downloads the selected image in JPEG format. An
example is given in Figure 39.

Example of an object in ADASilk and the downloading options that are available for each individual

object integrated into ADASilk.

{"language":"EN","imgUri":"https:
//silknow.org/silknow/media/vam
/O478172_0.jpg","dimension":{},"
technique":["Brocaded","Weavin
g"],"weaving":"Plain","backgroun
dColor":{"r":0.707547187805175
8,"g":0.2302865833044052,"b":0
.2302865833044052,"a":0},"mate
rials":[null],"endpoint":"http://grlc.

eurecom.fr/api-
git/silknow/api/","analytics":false}

Downloaded JSON file that

contains the information that is
relevant for Virtual Loom.

{"@type":"http://erlangen-crm.org/current/E22_Man-

Made_Object","@id":"http://data.silknow.org/object/a31f4190-e859-
3a43-af3e-

0b8c183e350e","@graph":"http://data.silknow.org/graph/vam","iden
tifier":"7559(IS)","representation":[{"@id":"http://data.silknow.org/ima

ge/4bbae8ac-98a0-3da6-b986-
29772daebb6b","image":"https://silknow.org/silknow/media/vam/O4
78172_0.jpg"}],"legalBody":{},"composed":[{"@type":"http://erlange-
crm.org/current/E78_Collection"},{"@id":"http://data.silknow.org/coll

ection/ed3dbc7c-4540-320d-a055-
6841c02cc217","@type":"http://erlangen-

crm.org/current/E78_Collection","label":"South & South East Asia
Collection"}],"material":[{}],"__material":{},"technique":[{"@id":"http://
data.silknow.org/vocabulary/192","label":"Brocaded"},{"@id":"http://
data.silknow.org/vocabulary/526","label":"Weaving"}],"usedType":{},
"depiction":[{}],"dimension":[{"@id":"http://data.silknow.org/object/a3

1f4190-e859-3a43-af3e-
0b8c183e350e/dimension/1","type":"length","value":47.5,"unit":"cm"

56

Downloaded image, in JPEG

format.

},{"@id":"http://data.silknow.org/object/a31f4190-e859-3a43-af3e-
0b8c183e350e/dimension/2","type":"width","value":24,"unit":"cm"}],"
time":{},"century":{},"location":[{"@id":"https://sws.geonames.org/12
79233/","featureCode":"https://www.geonames.org/ontology#P.PPL
","label":"Ahmedabad","latitude":"23.02579","longitude":"72.58727"}
],"type":[{"@id":"http://data.silknow.org/vocabulary/facet/fabrics","la
bel":"fabrics"}],"category":[{"@id":"http://data.silknow.org/category/1
","label":"Textiles"}],"label":"Ahmedabad","description":["Textile, silk,
gold-wrapped thread and silk brocade, Ahmedabad, ca. 1867","Dark
pink silk, brocaded with gold-wrapped thread and black silk in an all-

over diaper pattern."]}

Downloaded JSON file that contains all the data related to the
object.

Figure 39. Screenshots of ADASilk to test functionality 22.

3.2.23. Functionality 23

Description of the functionality: Being able to share content (one single record) on social
networks (e.g., Facebook, Instagram, Pinterest), by email, with a URL.
Fulfilled: Yes.
Implementation/use: As explained in functionality 03, when users are registered in ADASilk
they can share content through different media such as Facebook, Twitter, Whatsapp,
LinkedIn, email, etc. This was shown in Figure 12.

3.2.24. Functionality 24

Description of the functionality: Being able to share multiple content: (a query, a user
selection of records, etc) using the same procedures as above (social media, email, URL,
etc.).
Fulfilled: Yes.
Implementation/use: The search query in ADASilk generates a permalink, so anyone can
share the URL to anyone else and they will get the same results page.

Result after searching by Depiction/Floral motif.

https://ada.silknow.org/browse?t
ype=object&field_filter_depiction
=http%3A%2F%2Fdata.silknow.

org%2Fvocabulary%2F743

URL corresponding to searching
by Depiction/Floral motif. By

putting this URL in a browser,
the same results are obtained.

Figure 40. Screenshot and returned URL to test functionality 24.

57

3.2.25. Functionality 25

Description of the functionality: Providing the user with clear information about the licences
/ authors’ rights applied to the images and what can and cannot be done with them.
Fulfilled: Yes.
Implementation/use: Information related to the authorship and/or rights applied to the
images is available in the textual description of the object, when available.

Example of an object designed by Anna María Gartwaite and related textual information.

Figure 41. Screenshots of ADASilk to test functionality 25.

3.2.26. Functionality 26

Description of the functionality: Being able to contact the SILKNOW project.
Fulfilled: Yes.
Implementation/use: The email to contact SILKNOW’s coordination team is available on all
the pages in ADASilk. This can be seen in Figure 42

Detail of the text that is available in ADASilk, which includes the email to contact the SILKNOW

coordination team.

Figure 42. Screenshots of ADASilk to test functionality 26.

58

3.2.27. Discussion

The results provided by the Functional testing for ADASilk show very satisfactory outcomes
for most of the functionalities which were identified by SSH partners in the scope of WP2.
There are only two functionalities (numbers 04 and 18) which have not been fully
implemented, although it is feasible to have them implemented by the end of the project.
Therefore, the vast majority of the functionalities are already implemented and integrated into
ADASilk’s web application, which can be publicly accessed.

 Stress testing

With the stress testing of ADASilk, we aim to determine its robustness in answering users’
requests. ADASilk offers three different APIs to access the content of the SILKNOW
Knowledge Graph:

● ADASilk API (Internal) used by the ADASilk web application
● SILKNOW’s API (Public) powered by the SPARQL Transformer which can be used for

third party integration
● SPARQL API powered by the triple store (in our deployment, Virtuoso)

The ADASILK APIs used to execute the stress test are described in deliverable D6.4.

To this end, we have prepared some experiments by simulating different numbers of
concurrent users launching different requests, increasing the complexity of the query
associated with the request. The experiments are described in section 3.3.1. During the
experiments, we measured different parameters, explained in 3.3.2, which are used to assess
if the tool performs well, even when producing and interacting with complex requests and a
large number of concurrent users. The data gathered during the testing is provided in section
3.3.3 and analysed in sections 3.3.4 to 3.3.6. Finally, a brief discussion is set out in section
3.3.7.

3.3.1. Test description

We organized the stress tests according to the different SILKNOW Knowledge Graph access
methods:

● We define a thread group made up of different numbers of concurrent users: 5, 10, 30
and 50.

● Each user process launches a batch of requests, separated by a random timer.
● All users’ processes associated with the thread group execute their requests

concurrently.
● The whole process is repeated five times (once all users complete a batch).

Table 8 depicts the structure of the thread groups and the requests performed for the stress
test executed. This structure was repeated for each access method.

Number
of users

Requests
per user

Times
repeated

Total
requests

5 8 5 200
10 8 5 400

59

30 8 5 1200
50 8 5 2000

Table 8. Structure of the thread group of users and the number of requests performed
for each stress test on one of the three access methods offered by SILKNOW.

The test configuration is the same as the one performed with the thesaurus stress test in order
to clarify the process. Figure 10 shows a schema with the request execution process per
request for three concurrent users.

Table 9 shows the timetable with the stress tests execution.

Time and date Test launched
2021-06-25T04:00:00+0000 SILKNOW Public API (5 users)

2021-06-25T04:30:00+0000 ADASilk Internal API (5 users)
2021-06-25T05:00:00+0000 SPARQL API (5 users)
2021-06-25T06:00:00+0000 SILKNOW Public API (10 users)
2021-06-25T06:30:00+0000 ADASilk Internal API (10 users)
2021-06-25T07:00:00+0000 SPARQL API (10 users)
2021-06-24T10:00:00+0000 SILKNOW Public API (30 users)
2021-06-24T12:00:00+0000 ADASilk Internal API (30 users)
2021-06-24T14:00:00+0000 SPARQL API (30 users)
2021-06-24T16:00:00+0000 SILKNOW Public API (50 users)
2021-06-24T18:00:00+0000 ADASilk Internal API (50 users)
2021-06-24T20:00:00+0000 SPARQL API (50 users)

Table 9. Test stress execution timetable.

The hardware configuration which supports the three APIs services is described as follows:

● CPU: Intel Xeon L5640, 2.26 GHz, 12 cores (24 threads).
● RAM: 128 GB.
● Operating System: Linux Debian Buster, kernel 4.12.0.

The Knowledge Graph is hosted in a Virtuoso Docker replicated in a twin component. A load
balancer between the two images is used to distribute the server load.

The client system where the tests were executed has the following characteristics:

● CPU: Intel i5-6400 CPU @ 2.70GHz.
● RAM: 8 GB.
● Operative System: Linux Fedora 7.0.

The tests were launched from the JMeter tool [4], using OpenJDK Java 1.8. We used this tool
because of the API features and the tests’ requirements, which makes Apache JMeter an
adequate tool to perform such tests [5].

The tests are composed of a batch of requests. Each request has an associated query which
is adapted to the request in order to be executed for the different evaluated APIs.

The queries are decomposed into two sets of four queries each. Inside a set, the queries have
increased difficulty. The two different sets of queries, with different levels of difficulty, joined
to the different and random timers per request execution, define a complex scenario which
properly emulates a real situation.

60

The set of queries associated with the batch are:

Set 1:
● Production place: Italy,
● Text search: “damask”,
● Production time: eighteenth century (dates CE)
● Material: Metal thread

Set 2:
● Production Place: France
● Text search: “waistcoat”
● Technique: Velvet
● Material: silk thread

The specification of the adaptation of the queries to the different requests per API is detailed
in ANNEX I of this document.

3.3.2. Definition of the parameters measured

In order to evaluate the performance of the APIs, given the different requests made, a lot of
data are gathered per JMeter tool, but the parameters analyzed are:

● Elapsed time: the time elapsed between the time a user is issuing a request and a
response is received.

● Fails: the requests can fail for various reasons indicated by the different error codes
returned by the server (401, 404, 5, etc.).

The elapsed time is a very important parameter to define user experience. Based on the
operation, if the elapsed time is longer than what is usually observed in other similar
applications, the user experience is impacted.

Fail is the most critical situation, because the user must repeat the process in order to get the
required data.

3.3.3. Gathered data during the tests

As mentioned above, in this section we show the data gathered during the tests that will be
then analysed in subsections 3.3.4, 3.3.5 and 3.3.6. Table 10 gives a summary of the results
of the tests, where the values presented are the average of the elapsed time per request and
type of test, and the percentage of fails per request and type of test. Regarding the “fails
percentage”, we measure if the response expected per request finished without errors. This
is summarized in Table 10. Therefore, a result of “0” for this field means that all the response
texts are received without errors.

In order to analyse the gathered data, we propose two graphics:

● A graphic with the average of the elapsed time per request and number of concurrent
users.

● A graphic with the percentage of fails per request and number of concurrent users.

61

This methodology is slightly different from the one used in the thesaurus analysis. In these
tests, the number of requests is twice as important as in the previous tests, and mixing up all
the data in one chart would have made the graphic look overloaded.

Table 10. Data gathered for the different access methods of the Knowledge Graph given the

tests we have defined.

3.3.4. Results for ADASilk Internal API

Figure 43 shows the average elapsed time per request on the tests with 5, 10, 30 and 50
concurrent users, using the ADASilk Internal API.

62

Figure 43. The mean of the elapsed time required per request in the tests performed with 5,

10, 30 and 50 concurrent users with the internal ADASilk API.

Figure 44 shows the percentage of fails per request on the tests with 5, 10, 30 and 50
concurrent users, using the ADASilk Internal API.

Figure 44. The percentage of fails per request in the tests performed with 5, 10, 30 and 50
concurrent users on the internal ADASilk API.

63

If the last request is not taken into consideration, the stress tests related to the requests
performed on the ADASILK Internal API have ended up with very good results on the elapsed
time and in the number of fails per request. We conclude that with the current server
configuration this API can manage up to 50 concurrent users.

The main problem is that there is one request which seems to always fail: the last request of
the second set (the 8th) has a similar complexity to the 4th request in the first set. We have yet
to discover what causes this discrepancy in the results.

On the other hand, the number of concurrent users does not seem to cause a specific problem
for any of the tests carried out.

3.3.5. Results for SILKNOW Public API

Figure 45 shows the average elapsed time per request on the tests with 5, 10, 30 and 50
concurrent users with the SILKNOW Public API.

Figure 45. The mean of the elapsed time required per request in the tests performed with 5,

10, 30 and 50 concurrent users with the public SILKNOW API.

Figure 46 shows the percentage of fails per request on the tests with 5, 10, 30 and 50
concurrent users with the SILKNOW public API.

64

Figure 46. The percentage of fails per request in the tests performed with 5, 10, 30 and 50

concurrent users on the SILKNOW Public API.

The stress tests related to the requests performed on the SILKNOW Public API ended up with
very good results on the elapsed time when the number of fails is not too large. The problem
is that this number of fails is 100% in both the 3rd and the 7th request.

The 4th request has fewer fails than the 3rd one, but it is very high with tests executed with 30
concurrent users (greater than 60%) and the same situation occurs with tests executed with
50 concurrent users (almost 100%). This behaviour is abnormal since the query associated
with the 4th request is more complex than the query associated with the 3rd request. We have
yet to investigate why such a behaviour has been observed.

Given the results obtained, we recommend using this API with up to 10 concurrent users using
this hardware configuration.

3.3.6. Results for SPARQL API

Figure 47 shows the average elapsed time per request on the tests executed with 5, 10, 30
and 50 concurrent users with the SPARQL API. Figure 48 shows the percentage of fails per
request on the tests with 5, 10, 30 and 30 concurrent users with the SPARQL API.

65

Figure 47. The mean of the elapsed time required per request in the tests performed with 5,

10, 30 and 50 concurrent users with the SPARQL API.

Figure 48. The percentage of fails per request in the tests performed with 5, 10, 30 and 50

concurrent users on the SPARQL API.

66

The stress tests related to the requests performed on the SPARQL API ended up with very
good results with regard to the elapsed time and the number of fails. The 4th request had a
large number of fails in the tests executed with 10, 30 and 50 concurrent users (40%-50%)
The 5th request also had a percentage of 35% of fails in the tests executed with 10 concurrent
users. So, 4 requests had a significant number of fails, but always under 50% and only with
tests executed with 10 or more concurrent users.

This API has the same problem with specific types of requests, but the problems are fewer
than the ones with the SILKNOW Public API. In this case, the query never failed at a rate of
100%, and the number of requests affected is minimal.

3.3.7. Discussion

Given the hardware configuration, we conclude that the best performance is achieved using
ADASilk. This is due, in part, to the smart caching we have implemented when developing this
internal API. There is one specific query that fails, and it is necessary to find out why, in order
to improve the system and to achieve an even better user experience.

The performance is lower using the other two access methods, since they do not have the
smart caching. On the one hand, the SPARQL API is slightly more efficient than the SILKNOW
API. On the other hand, the SPARQL API is harder to use for a Web client as the response is
not web developer friendly. The difference between the two is the overhead provided by the
SPARQL Transformer component. While we generally expect that this overhead is minor in
most circumstances, we have yet to investigate why it can be so important for some queries.

4. SERVER STATISTICS

In order to add more data about the stress test, in this section the log of HAProxy is included,
which we set up to control the 2 endpoints. It was active during the days the tests were
executed and before, during the previous, and intermediate days. As a result of the 9 days of
operations, the data of both endpoints is shown below:

● Endpoint 1: 372 522 requests. 94% resulting in 2xx (success) responses, 3% in 4xx
(client errors) responses and 2% in 5xx (server errors) responses. The average
response time is 15ms, while the maximum response time for a request was 49.8
seconds.

● Endpoint 2: 372 052 requests. 93% resulting in 2xx (success) responses, 3% in 4xx
(client errors) responses and 2% in 5xx (server errors) responses. The average
response time is 14ms, while the maximum response time for a request was 49.9
seconds.

The round robin worked well. Figure 49 shows the log summary of the HAProxy.

67

Figure 49. Summary of the logs of the HA Proxy with data concerning the two endpoints

during the time the tests were executed.

5. CONCLUSIONS

In this deliverable, we have presented the result of the evaluation of two tools developed within
the SILKNOW project, namely the SILKNOW thesaurus browser and the ADASilk web
application.

Firstly, we evaluated the functionalities which we have developed. We conclude that the
majority of functionalities have been fully developed, while the few remaining ones will be
developed very soon.

Secondly, we have designed and executed stress tests for the different access methods to
the SILKNOW Knowledge Graph and Thesaurus. When testing the access to the SILKNOW
Thesaurus, we have noted that both the SILKNOW Public API and the SILKNOW SPARQL
API provide excellent results, given the hardware configuration we have setup (i.e., a single
server machine, with 2 Virtuoso replica hosting the same knowledge graph and a load
balancer), for the different tests performed with 5, 10, 30 and 50 concurrent users. For third
party integration, we recommend using the SILKNOW Public API built using the SPARQL
Transformer, as it delivers more web developer friendly responses. The stress tests executed
using the SKOSMOS software, which we have ourselves optimized, are good too, but not as
good as the previous executed tests. The web interface adds a delay for specific actions,
especially in the tests related to getting narrower and broader concepts. The user experience
is acceptable with 10 concurrent users. We have yet to investigate how the SKOSMOS
software could be further optimized to better handle this type of query.

When testing access to the SILKNOW Knowledge Graph, the best performance is attained
using ADASilk. It uses an internal API that benefits from some smart caching, yielding better
results in terms of average elapsed time and the percentage of fail requests. Some specific
types of queries need to be investigated as they unexpectedly generate a higher percentage
of fails. Considering the current hardware configuration, we conclude that the system can
handle 50 concurrent users. The results of the other two other access methods (SILKNOW

68

Public API and SPARQL API) are not so good. These are made for third party integration.
Given the current hardware configuration, we recommend that they are suitable for 10
concurrent users. The difference between the two APIs, and the exact overhead provided by
the SPARQL Transformer when implementing the SILKNOW Public API, has not been
consistently measured and should be the topic of future research.

REFERENCES

[1] P. Harping y M. Baca, Eds., Introduction to Controlled Vocabularies: Terminology for
Art, Architecture, and Other Cultural Works. Los Angeles: The Getty Research Institute, 2015.
[2] NatLibFi/Skosmos. National Library of Finland, 2021. Accedido: jul. 02, 2021. [En
línea]. Disponible en: https://github.com/NatLibFi/Skosmos
[3] «OpenLink Virtuoso SPARQL Query Editor». https://data.silknow.org/sparql (accedido
jul. 02, 2021).
[4] «Apache JMeter - Apache JMeterTM». https://jmeter.apache.org/ (accedido jul. 02,
2021).
[5] R. Abbas, Z. Sultan, y S. N. Bhatti, «Comparative Study of Load Testing Tools: Apache
JMeter, HP LoadRunner, Microsoft Visual Studio (TFS), Siege», Sukkur IBA J. Comput. Math.
Sci., vol. 1, n.o 2, Art. n.o 2, dic. 2017, doi: 10.30537/sjcms.v1i2.24.

69

ANNEX I. Request specification for stress test with ADASilk

Batch 1

Q1.1 Production Place: “Italy” (5901 results)

ADASilk API:
https://ada.silknow.org/api/search?field_filter_location=https%3A%2F%2Fsws.geonames.org%2F31
75395%2F&page=1&type=object

SILKNOW API: https://grlc.eurecom.fr/api-
git/silknow/api/obj_list?location=Italy&endpoint=http%3A%2F%2Fdata.silknow.org%2Fsparql

SPARQL-Transformer (ADASilk):
{
 "@graph": [{
 "@id": "?id",
 "@graph": "?g"
 }],
 "$where": ["\n GRAPH ?g { ?id a ecrm:E22_Man-Made_Object }.?production
ecrm:P108_has_produced ?id\n .\n ?production ecrm:P8_took_place_on_or_within
?location.OPTIONAL { ?location geonames:parentCountry ?parentCountry .
}\n .\n \n \n FILTER((?location = <https://sws.geonames.org/3175395/> ||
?parentCountry = <https://sws.geonames.org/3175395/>))\n "],
 "$filter": [],
 "$offset": "0",
 "$limit": 20,
 "$prefixes": {
 "rdfs": "http://www.w3.org/2000/01/rdf-schema#",
 "schema": "http://schema.org/",
 "ecrm": "http://erlangen-crm.org/current/",
 "crmdig": "http://www.ics.forth.gr/isl/CRMext/CRMdig.rdfs/",
 "dc": "http://purl.org/dc/elements/1.1/",
 "geo": "http://www.w3.org/2003/01/geo/wgs84_pos#",
 "geonames": "http://www.geonames.org/ontology#",
 "skos": "http://www.w3.org/2004/02/skos/core#",
 "silk": "http://data.silknow.org/ontology/property/"
 }
}

Generated SPARQL Query: Link
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX schema: <http://schema.org/>
PREFIX ecrm: <http://erlangen-crm.org/current/>
PREFIX crmdig: <http://www.ics.forth.gr/isl/CRMext/CRMdig.rdfs/>
PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX geo: <http://www.w3.org/2003/01/geo/wgs84_pos#>
PREFIX geonames: <http://www.geonames.org/ontology#>
PREFIX skos: <http://www.w3.org/2004/02/skos/core#>
PREFIX silk: <http://data.silknow.org/ontology/property/>
SELECT DISTINCT ?id ?g
WHERE {
 GRAPH ?g { ?id a ecrm:E22_Man-Made_Object }.?production ecrm:P108_has_produced ?id .
 ?production ecrm:P8_took_place_on_or_within ?location.OPTIONAL { ?location
geonames:parentCountry ?parentCountry . } .
 FILTER((?location = <https://sws.geonames.org/3175395/> || ?parentCountry =
<https://sws.geonames.org/3175395/>))
}

70

LIMIT 20
OFFSET 0

Q1.2 Production Place: “Italy” & Text_Search: “damask” (3520 results)

ADASilk API:
https://ada.silknow.org/api/search?field_filter_location=https%3A%2F%2Fsws.geonames.org%2F31
75395%2F&page=1&q=damask&type=object

SILKNOW API: http://grlc.eurecom.fr/api-
git/silknow/api/obj_list_text_search?text=damask&location=Italy&endpoint=http%3A%2F%2Fdata.sil
know.org%2Fsparql

SPARQL-Transformer (ADASilk):

{
 "@graph": [{
 "@id": "?id",
 "@graph": "?g"
 }],
 "$where": ["\n GRAPH ?g { ?id a ecrm:E22_Man-Made_Object }.?production
ecrm:P108_has_produced ?id\n .\n ?production ecrm:P8_took_place_on_or_within
?location.OPTIONAL { ?location geonames:parentCountry ?parentCountry .
}\n .\n \n {\n { ?id ?_s1p ?_s1o . ?_s1o bif:contains '\"damask*\"'
}\n UNION\n { ?id ?_s1p ?_s1o . FILTER(?_s1o = \"damask\")
}\n UNION\n { ?_s1o ?_s1p ?id . ?_s1o ?_s2p ?_s2o . ?_s2o bif:contains
'\"damask*\"' }\n UNION\n { ?_s1o ?_s1p ?id . ?_s1o ?_s2p ?_s2o . FILTER(?_s2o =
\"damask\") }\n UNION\n { ?_s1o ?_s1p ?id . ?_s1o ?_s2p ?_s2o . ?_s2o ?_s3p ?_s3o
. ?_s3o bif:contains '\"damask*\"' }\n UNION\n { ?_s1o ?_s1p ?id . ?_s1o ?_s2p
?_s2o . ?_s2o ?_s3p ?_s3o . FILTER(?_s3o = \"damask\")
}\n }\n \n .\n FILTER((?location = <https://sws.geonames.org/3175395/> ||
?parentCountry = <https://sws.geonames.org/3175395/>))\n "],
 "$filter": [],
 "$offset": "0",
 "$limit": 20,
 "$prefixes": {
 "rdfs": "http://www.w3.org/2000/01/rdf-schema#",
 "schema": "http://schema.org/",
 "ecrm": "http://erlangen-crm.org/current/",
 "crmdig": "http://www.ics.forth.gr/isl/CRMext/CRMdig.rdfs/",
 "dc": "http://purl.org/dc/elements/1.1/",
 "geo": "http://www.w3.org/2003/01/geo/wgs84_pos#",
 "geonames": "http://www.geonames.org/ontology#",
 "skos": "http://www.w3.org/2004/02/skos/core#",
 "silk": "http://data.silknow.org/ontology/property/"
 }
}

Generated SPARQL Query: Link
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX schema: <http://schema.org/>
PREFIX ecrm: <http://erlangen-crm.org/current/>
PREFIX crmdig: <http://www.ics.forth.gr/isl/CRMext/CRMdig.rdfs/>
PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX geo: <http://www.w3.org/2003/01/geo/wgs84_pos#>
PREFIX geonames: <http://www.geonames.org/ontology#>

71

PREFIX skos: <http://www.w3.org/2004/02/skos/core#>
PREFIX silk: <http://data.silknow.org/ontology/property/>
SELECT DISTINCT ?id ?g
WHERE {
 GRAPH ?g { ?id a ecrm:E22_Man-Made_Object }.?production ecrm:P108_has_produced ?id
 .
 ?production ecrm:P8_took_place_on_or_within ?location.OPTIONAL { ?location
geonames:parentCountry ?parentCountry . }
 .
 {
 { ?id ?_s1p ?_s1o . ?_s1o bif:contains '"damask*"' }
 UNION
 { ?id ?_s1p ?_s1o . FILTER(?_s1o = "damask") }
 UNION
 { ?_s1o ?_s1p ?id . ?_s1o ?_s2p ?_s2o . ?_s2o bif:contains '"damask*"' }
 UNION
 { ?_s1o ?_s1p ?id . ?_s1o ?_s2p ?_s2o . FILTER(?_s2o = "damask") }
 UNION
 { ?_s1o ?_s1p ?id . ?_s1o ?_s2p ?_s2o . ?_s2o ?_s3p ?_s3o . ?_s3o bif:contains '"damask*"'
}
 UNION
 { ?_s1o ?_s1p ?id . ?_s1o ?_s2p ?_s2o . ?_s2o ?_s3p ?_s3o . FILTER(?_s3o = "damask") }
 }
 .
 FILTER((?location = <https://sws.geonames.org/3175395/> || ?parentCountry =
<https://sws.geonames.org/3175395/>))
}
LIMIT 20
OFFSET 0

Q1.3 Production Place: “Italy” & Text_Search: “damask” & Production_Time: eighteenth century
(dates CE) (832 results)

ADASilk API:
https://ada.silknow.org/api/search?field_filter_location=https%3A%2F%2Fsws.geonames.org%2F31
75395%2F&field_filter_time=http%3A%2F%2Fvocab.getty.edu%2Faat%2F300404512&page=1&q=
damask&type=object

SILKNOW API: http://grlc.eurecom.fr/api-
git/silknow/api/obj_list_text_search?time=eighteenth%20century%20(dates%20CE)&text=damask&l
ocation=Italy&endpoint=http%3A%2F%2Fdata.silknow.org%2Fsparql

SPARQL-Transformer (ADASilk):

72

{
 "@graph": [{
 "@id": "?id",
 "@graph": "?g"
 }],
 "$where": ["\n GRAPH ?g { ?id a ecrm:E22_Man-Made_Object }.?production
ecrm:P108_has_produced ?id\n .\n ?production ecrm:P4_has_time-span ?time.OPTIONAL {
?time ecrm:P86_falls_within ?fallsWithin . }.?production ecrm:P8_took_place_on_or_within
?location.OPTIONAL { ?location geonames:parentCountry ?parentCountry .
}\n .\n \n {\n { ?id ?_s1p ?_s1o . ?_s1o bif:contains '\"damask*\"'
}\n UNION\n { ?id ?_s1p ?_s1o . FILTER(?_s1o = \"damask\")
}\n UNION\n { ?_s1o ?_s1p ?id . ?_s1o ?_s2p ?_s2o . ?_s2o bif:contains
'\"damask*\"' }\n UNION\n { ?_s1o ?_s1p ?id . ?_s1o ?_s2p ?_s2o . FILTER(?_s2o =
\"damask\") }\n UNION\n { ?_s1o ?_s1p ?id . ?_s1o ?_s2p ?_s2o . ?_s2o ?_s3p ?_s3o
. ?_s3o bif:contains '\"damask*\"' }\n UNION\n { ?_s1o ?_s1p ?id . ?_s1o ?_s2p
?_s2o . ?_s2o ?_s3p ?_s3o . FILTER(?_s3o = \"damask\")
}\n }\n \n .\n FILTER((?time = <http://vocab.getty.edu/aat/300404512> ||
?fallsWithin = <http://vocab.getty.edu/aat/300404512>) && (?location =
<https://sws.geonames.org/3175395/> || ?parentCountry =
<https://sws.geonames.org/3175395/>))\n "],
 "$filter": [],
 "$offset": "0",
 "$limit": 20,
 "$prefixes": {
 "rdfs": "http://www.w3.org/2000/01/rdf-schema#",
 "schema": "http://schema.org/",
 "ecrm": "http://erlangen-crm.org/current/",
 "crmdig": "http://www.ics.forth.gr/isl/CRMext/CRMdig.rdfs/",
 "dc": "http://purl.org/dc/elements/1.1/",
 "geo": "http://www.w3.org/2003/01/geo/wgs84_pos#",
 "geonames": "http://www.geonames.org/ontology#",
 "skos": "http://www.w3.org/2004/02/skos/core#",
 "silk": "http://data.silknow.org/ontology/property/"
 }
}

Generated SPARQL Query: Link
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX schema: <http://schema.org/>
PREFIX ecrm: <http://erlangen-crm.org/current/>
PREFIX crmdig: <http://www.ics.forth.gr/isl/CRMext/CRMdig.rdfs/>
PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX geo: <http://www.w3.org/2003/01/geo/wgs84_pos#>
PREFIX geonames: <http://www.geonames.org/ontology#>
PREFIX skos: <http://www.w3.org/2004/02/skos/core#>
PREFIX silk: <http://data.silknow.org/ontology/property/>
SELECT DISTINCT ?id ?g
WHERE {
 GRAPH ?g { ?id a ecrm:E22_Man-Made_Object }.?production ecrm:P108_has_produced ?id
 .
 ?production ecrm:P4_has_time-span ?time.OPTIONAL { ?time ecrm:P86_falls_within ?fallsWithin
. }.?production ecrm:P8_took_place_on_or_within ?location.OPTIONAL { ?location
geonames:parentCountry ?parentCountry . }
 .
 {
 { ?id ?_s1p ?_s1o . ?_s1o bif:contains '"damask*"' }
 UNION
 { ?id ?_s1p ?_s1o . FILTER(?_s1o = "damask") }
 UNION
 { ?_s1o ?_s1p ?id . ?_s1o ?_s2p ?_s2o . ?_s2o bif:contains '"damask*"' }
 UNION
 { ?_s1o ?_s1p ?id . ?_s1o ?_s2p ?_s2o . FILTER(?_s2o = "damask") }

73

 UNION
 { ?_s1o ?_s1p ?id . ?_s1o ?_s2p ?_s2o . ?_s2o ?_s3p ?_s3o . ?_s3o bif:contains '"damask*"'
}
 UNION
 { ?_s1o ?_s1p ?id . ?_s1o ?_s2p ?_s2o . ?_s2o ?_s3p ?_s3o . FILTER(?_s3o = "damask") }
 }
 .
 FILTER((?time = <http://vocab.getty.edu/aat/300404512> || ?fallsWithin =
<http://vocab.getty.edu/aat/300404512>) && (?location = <https://sws.geonames.org/3175395/> ||
?parentCountry = <https://sws.geonames.org/3175395/>))
}
LIMIT 20
OFFSET 0

Q1.4 Production Place: “Italy” & Text_Search: “damask” & Production_Time: eighteenth century
(dates CE) & Material: Metal thread (55 results)

ADASilk API:
https://ada.silknow.org/api/search?&field_filter_material=http%3A%2F%2Fdata.silknow.org%2Fvoc
abulary%2F497&field_filter_location=https%3A%2F%2Fsws.geonames.org%2F3175395%2F&field
_filter_time=http%3A%2F%2Fvocab.getty.edu%2Faat%2F300404512&page=1&q=damask&type=o
bject

SILKNOW API: http://grlc.eurecom.fr/api-
git/silknow/api/obj_list_text_search?material=metal%20thread&time=eighteenth%20century%20(dat
es%20CE)&text=damask&location=Italy&endpoint=http%3A%2F%2Fdata.silknow.org%2Fsparql

SPARQL-Transformer (ADASilk):

{
 "@graph": [{
 "@id": "?id",
 "@graph": "?g"
 }],
 "$where": ["\n GRAPH ?g { ?id a ecrm:E22_Man-Made_Object }.?production
ecrm:P108_has_produced ?id\n .\n ?production ecrm:P8_took_place_on_or_within
?location.OPTIONAL { ?location geonames:parentCountry ?parentCountry . }.?production
ecrm:P126_employed ?material.OPTIONAL { ?broaderMaterial (skos:member|skos:narrower)* ?material
}.?production ecrm:P32_used_general_technique ?technique.OPTIONAL { ?broaderTechnique
(skos:member|skos:narrower)* ?technique }\n .\n \n {\n { ?id ?_s1p ?_s1o .
?_s1o bif:contains '\"waistcoat*\"' }\n UNION\n { ?id ?_s1p ?_s1o . FILTER(?_s1o =
\"waistcoat\") }\n UNION\n { ?_s1o ?_s1p ?id . ?_s1o ?_s2p ?_s2o . ?_s2o
bif:contains '\"waistcoat*\"' }\n UNION\n { ?_s1o ?_s1p ?id . ?_s1o ?_s2p ?_s2o .
FILTER(?_s2o = \"waistcoat\") }\n UNION\n { ?_s1o ?_s1p ?id . ?_s1o ?_s2p ?_s2o .
?_s2o ?_s3p ?_s3o . ?_s3o bif:contains '\"waistcoat*\"' }\n UNION\n { ?_s1o ?_s1p
?id . ?_s1o ?_s2p ?_s2o . ?_s2o ?_s3p ?_s3o . FILTER(?_s3o = \"waistcoat\")
}\n }\n \n .\n FILTER((?location = <https://sws.geonames.org/3175395/> ||
?parentCountry = <https://sws.geonames.org/3175395/>) && (?material =
<http://data.silknow.org/vocabulary/277> || ?broaderMaterial =
<http://data.silknow.org/vocabulary/277>) && (?technique =
<http://data.silknow.org/vocabulary/379> || ?broaderTechnique =
<http://data.silknow.org/vocabulary/379>))\n "],
 "$filter": [],
 "$offset": "0",
 "$limit": 20,
 "$prefixes": {
 "rdfs": "http://www.w3.org/2000/01/rdf-schema#",
 "schema": "http://schema.org/",

74

 "ecrm": "http://erlangen-crm.org/current/",
 "crmdig": "http://www.ics.forth.gr/isl/CRMext/CRMdig.rdfs/",
 "dc": "http://purl.org/dc/elements/1.1/",
 "geo": "http://www.w3.org/2003/01/geo/wgs84_pos#",
 "geonames": "http://www.geonames.org/ontology#",
 "skos": "http://www.w3.org/2004/02/skos/core#",
 "silk": "http://data.silknow.org/ontology/property/"
 }
}

Generated SPARQL Query: Link
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX schema: <http://schema.org/>
PREFIX ecrm: <http://erlangen-crm.org/current/>
PREFIX crmdig: <http://www.ics.forth.gr/isl/CRMext/CRMdig.rdfs/>
PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX geo: <http://www.w3.org/2003/01/geo/wgs84_pos#>
PREFIX geonames: <http://www.geonames.org/ontology#>
PREFIX skos: <http://www.w3.org/2004/02/skos/core#>
PREFIX silk: <http://data.silknow.org/ontology/property/>
SELECT DISTINCT ?id ?g
WHERE {
 GRAPH ?g { ?id a ecrm:E22_Man-Made_Object }.?production ecrm:P108_has_produced ?id
 .
 ?production ecrm:P4_has_time-span ?time.OPTIONAL { ?time ecrm:P86_falls_within ?fallsWithin
. }.?production ecrm:P8_took_place_on_or_within ?location.OPTIONAL { ?location
geonames:parentCountry ?parentCountry . }.?production ecrm:P126_employed ?material.OPTIONAL {
?broaderMaterial (skos:member|skos:narrower)* ?material }
 .
 {
 { ?id ?_s1p ?_s1o . ?_s1o bif:contains '"damask*"' }
 UNION
 { ?id ?_s1p ?_s1o . FILTER(?_s1o = "damask") }
 UNION
 { ?_s1o ?_s1p ?id . ?_s1o ?_s2p ?_s2o . ?_s2o bif:contains '"damask*"' }
 UNION
 { ?_s1o ?_s1p ?id . ?_s1o ?_s2p ?_s2o . FILTER(?_s2o = "damask") }
 UNION
 { ?_s1o ?_s1p ?id . ?_s1o ?_s2p ?_s2o . ?_s2o ?_s3p ?_s3o . ?_s3o bif:contains '"damask*"'
}
 UNION
 { ?_s1o ?_s1p ?id . ?_s1o ?_s2p ?_s2o . ?_s2o ?_s3p ?_s3o . FILTER(?_s3o = "damask") }
 }
 .
 FILTER((?time = <http://vocab.getty.edu/aat/300404512> || ?fallsWithin =
<http://vocab.getty.edu/aat/300404512>) && (?location = <https://sws.geonames.org/3175395/> ||
?parentCountry = <https://sws.geonames.org/3175395/>) && (?material =
<http://data.silknow.org/vocabulary/497> || ?broaderMaterial =
<http://data.silknow.org/vocabulary/497>))
}
LIMIT 20
OFFSET 0

75

Batch 2

Q2.1 Production Place: “France” (7079 results)

ADASilk API:
https://ada.silknow.org/api/search?field_filter_location=https%3A%2F%2Fsws.geonames.org%2F30
17382%2F&page=1&type=object

SILKNOW API: https://grlc.eurecom.fr/api-
git/silknow/api/obj_list?location=France&endpoint=http%3A%2F%2Fdata.silknow.org%2Fsparql

SPARQL-Transformer (ADASilk):
{
 "@graph": [{
 "@id": "?id",
 "@graph": "?g"
 }],
 "$where": ["\n GRAPH ?g { ?id a ecrm:E22_Man-Made_Object }.?production
ecrm:P108_has_produced ?id\n .\n ?production ecrm:P8_took_place_on_or_within
?location.OPTIONAL { ?location geonames:parentCountry ?parentCountry .
}\n .\n \n \n FILTER((?location = <https://sws.geonames.org/3017382/> ||
?parentCountry = <https://sws.geonames.org/3017382/>))\n "],
 "$filter": [],
 "$offset": "0",
 "$limit": 20,
 "$prefixes": {
 "rdfs": "http://www.w3.org/2000/01/rdf-schema#",
 "schema": "http://schema.org/",
 "ecrm": "http://erlangen-crm.org/current/",
 "crmdig": "http://www.ics.forth.gr/isl/CRMext/CRMdig.rdfs/",
 "dc": "http://purl.org/dc/elements/1.1/",
 "geo": "http://www.w3.org/2003/01/geo/wgs84_pos#",
 "geonames": "http://www.geonames.org/ontology#",
 "skos": "http://www.w3.org/2004/02/skos/core#",
 "silk": "http://data.silknow.org/ontology/property/"
 }
}

Generated SPARQL Query: Link
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX schema: <http://schema.org/>
PREFIX ecrm: <http://erlangen-crm.org/current/>
PREFIX crmdig: <http://www.ics.forth.gr/isl/CRMext/CRMdig.rdfs/>
PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX geo: <http://www.w3.org/2003/01/geo/wgs84_pos#>
PREFIX geonames: <http://www.geonames.org/ontology#>
PREFIX skos: <http://www.w3.org/2004/02/skos/core#>
PREFIX silk: <http://data.silknow.org/ontology/property/>
SELECT DISTINCT ?id ?g
WHERE {
 GRAPH ?g { ?id a ecrm:E22_Man-Made_Object }.?production ecrm:P108_has_produced ?id
 .
 ?production ecrm:P8_took_place_on_or_within ?location.OPTIONAL { ?location
geonames:parentCountry ?parentCountry . }
 .
 FILTER((?location = <https://sws.geonames.org/3017382/> || ?parentCountry =
<https://sws.geonames.org/3017382/>))
}

76

LIMIT 20
OFFSET 0

Q2.2 Production Place: “France” & text_search: “waistcoat” (3416 results)

ADASilk API:
https://ada.silknow.org/api/search?field_filter_location=https%3A%2F%2Fsws.geonames.org%2F30
17382%2F&page=1&q=waistcoat&type=object

SILKNOW API: http://grlc.eurecom.fr/api-
git/silknow/api/obj_list_text_search?text=waistcoat&location=France&endpoint=http%3A%2F%2Fda
ta.silknow.org%2Fsparql

SPARQL-Transformer (ADASilk):
{
 "@graph": [{
 "@id": "?id",
 "@graph": "?g"
 }],
 "$where": ["\n GRAPH ?g { ?id a ecrm:E22_Man-Made_Object }.?production
ecrm:P108_has_produced ?id\n .\n ?production ecrm:P8_took_place_on_or_within
?location.OPTIONAL { ?location geonames:parentCountry ?parentCountry .
}\n .\n \n {\n { ?id ?_s1p ?_s1o . ?_s1o bif:contains '\"waistcoat*\"'
}\n UNION\n { ?id ?_s1p ?_s1o . FILTER(?_s1o = \"waistcoat\")
}\n UNION\n { ?_s1o ?_s1p ?id . ?_s1o ?_s2p ?_s2o . ?_s2o bif:contains
'\"waistcoat*\"' }\n UNION\n { ?_s1o ?_s1p ?id . ?_s1o ?_s2p ?_s2o . FILTER(?_s2o
= \"waistcoat\") }\n UNION\n { ?_s1o ?_s1p ?id . ?_s1o ?_s2p ?_s2o . ?_s2o ?_s3p
?_s3o . ?_s3o bif:contains '\"waistcoat*\"' }\n UNION\n { ?_s1o ?_s1p ?id . ?_s1o
?_s2p ?_s2o . ?_s2o ?_s3p ?_s3o . FILTER(?_s3o = \"waistcoat\")
}\n }\n \n .\n FILTER((?location = <https://sws.geonames.org/3017382/> ||
?parentCountry = <https://sws.geonames.org/3017382/>))\n "],
 "$filter": [],
 "$offset": "0",
 "$limit": 20,
 "$prefixes": {
 "rdfs": "http://www.w3.org/2000/01/rdf-schema#",
 "schema": "http://schema.org/",
 "ecrm": "http://erlangen-crm.org/current/",
 "crmdig": "http://www.ics.forth.gr/isl/CRMext/CRMdig.rdfs/",
 "dc": "http://purl.org/dc/elements/1.1/",
 "geo": "http://www.w3.org/2003/01/geo/wgs84_pos#",
 "geonames": "http://www.geonames.org/ontology#",
 "skos": "http://www.w3.org/2004/02/skos/core#",
 "silk": "http://data.silknow.org/ontology/property/"
 }
}

Generated SPARQL Query: Link
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX schema: <http://schema.org/>
PREFIX ecrm: <http://erlangen-crm.org/current/>
PREFIX crmdig: <http://www.ics.forth.gr/isl/CRMext/CRMdig.rdfs/>
PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX geo: <http://www.w3.org/2003/01/geo/wgs84_pos#>
PREFIX geonames: <http://www.geonames.org/ontology#>
PREFIX skos: <http://www.w3.org/2004/02/skos/core#>
PREFIX silk: <http://data.silknow.org/ontology/property/>
SELECT DISTINCT ?id ?g

77

WHERE {
 GRAPH ?g { ?id a ecrm:E22_Man-Made_Object }.?production ecrm:P108_has_produced ?id
 .
 ?production ecrm:P8_took_place_on_or_within ?location.OPTIONAL { ?location
geonames:parentCountry ?parentCountry . }
 .
 {
 { ?id ?_s1p ?_s1o . ?_s1o bif:contains '"waistcoat*"' }
 UNION
 { ?id ?_s1p ?_s1o . FILTER(?_s1o = "waistcoat") }
 UNION
 { ?_s1o ?_s1p ?id . ?_s1o ?_s2p ?_s2o . ?_s2o bif:contains '"waistcoat*"' }
 UNION
 { ?_s1o ?_s1p ?id . ?_s1o ?_s2p ?_s2o . FILTER(?_s2o = "waistcoat") }
 UNION
 { ?_s1o ?_s1p ?id . ?_s1o ?_s2p ?_s2o . ?_s2o ?_s3p ?_s3o . ?_s3o bif:contains
'"waistcoat*"' }
 UNION
 { ?_s1o ?_s1p ?id . ?_s1o ?_s2p ?_s2o . ?_s2o ?_s3p ?_s3o . FILTER(?_s3o = "waistcoat") }
 }
 .
 FILTER((?location = <https://sws.geonames.org/3017382/> || ?parentCountry =
<https://sws.geonames.org/3017382/>))
}
LIMIT 20
OFFSET 0

Q2.3 Production Place: “France” & text_search: “waistcoat”& Technique:”Velvet” (249 results)

ADASilk API:
https://ada.silknow.org/api/search?field_filter_location=https%3A%2F%2Fsws.geonames.org%2F30
17382%2F&field_filter_technique=http%3A%2F%2Fdata.silknow.org%2Fvocabulary%2F379&page
=1&q=waistcoat&type=object

SILKNOW API: http://grlc.eurecom.fr/api-
git/silknow/api/obj_list_text_search?text=waistcoat&technique=Velvet&location=France&endpoint=h
ttp%3A%2F%2Fdata.silknow.org%2Fsparql

SPARQL-Transformer (ADASilk):
{
 "@graph": [{
 "@id": "?id",
 "@graph": "?g"
 }],
 "$where": ["\n GRAPH ?g { ?id a ecrm:E22_Man-Made_Object }.?production
ecrm:P108_has_produced ?id\n .\n ?production ecrm:P8_took_place_on_or_within
?location.OPTIONAL { ?location geonames:parentCountry ?parentCountry . }.?production
ecrm:P32_used_general_technique ?technique.OPTIONAL { ?broaderTechnique
(skos:member|skos:narrower)* ?technique }\n .\n \n {\n { ?id ?_s1p ?_s1o .
?_s1o bif:contains '\"waistcoat*\"' }\n UNION\n { ?id ?_s1p ?_s1o . FILTER(?_s1o =
\"waistcoat\") }\n UNION\n { ?_s1o ?_s1p ?id . ?_s1o ?_s2p ?_s2o . ?_s2o
bif:contains '\"waistcoat*\"' }\n UNION\n { ?_s1o ?_s1p ?id . ?_s1o ?_s2p ?_s2o .
FILTER(?_s2o = \"waistcoat\") }\n UNION\n { ?_s1o ?_s1p ?id . ?_s1o ?_s2p ?_s2o .
?_s2o ?_s3p ?_s3o . ?_s3o bif:contains '\"waistcoat*\"' }\n UNION\n { ?_s1o ?_s1p
?id . ?_s1o ?_s2p ?_s2o . ?_s2o ?_s3p ?_s3o . FILTER(?_s3o = \"waistcoat\")
}\n }\n \n .\n FILTER((?location = <https://sws.geonames.org/3017382/> ||
?parentCountry = <https://sws.geonames.org/3017382/>) && (?technique =
<http://data.silknow.org/vocabulary/379> || ?broaderTechnique =
<http://data.silknow.org/vocabulary/379>))\n "],

78

 "$filter": [],
 "$offset": "0",
 "$limit": 20,
 "$prefixes": {
 "rdfs": "http://www.w3.org/2000/01/rdf-schema#",
 "schema": "http://schema.org/",
 "ecrm": "http://erlangen-crm.org/current/",
 "crmdig": "http://www.ics.forth.gr/isl/CRMext/CRMdig.rdfs/",
 "dc": "http://purl.org/dc/elements/1.1/",
 "geo": "http://www.w3.org/2003/01/geo/wgs84_pos#",
 "geonames": "http://www.geonames.org/ontology#",
 "skos": "http://www.w3.org/2004/02/skos/core#",
 "silk": "http://data.silknow.org/ontology/property/"
 }
}

Generated SPARQL Query: Link
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX schema: <http://schema.org/>
PREFIX ecrm: <http://erlangen-crm.org/current/>
PREFIX crmdig: <http://www.ics.forth.gr/isl/CRMext/CRMdig.rdfs/>
PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX geo: <http://www.w3.org/2003/01/geo/wgs84_pos#>
PREFIX geonames: <http://www.geonames.org/ontology#>
PREFIX skos: <http://www.w3.org/2004/02/skos/core#>
PREFIX silk: <http://data.silknow.org/ontology/property/>
SELECT DISTINCT ?id ?g
WHERE {
 GRAPH ?g { ?id a ecrm:E22_Man-Made_Object }.?production ecrm:P108_has_produced ?id
 .
 ?production ecrm:P8_took_place_on_or_within ?location.OPTIONAL { ?location
geonames:parentCountry ?parentCountry . }.?production ecrm:P32_used_general_technique
?technique.OPTIONAL { ?broaderTechnique (skos:member|skos:narrower)* ?technique }
 .
 {
 { ?id ?_s1p ?_s1o . ?_s1o bif:contains '"waistcoat*"' }
 UNION
 { ?id ?_s1p ?_s1o . FILTER(?_s1o = "waistcoat") }
 UNION
 { ?_s1o ?_s1p ?id . ?_s1o ?_s2p ?_s2o . ?_s2o bif:contains '"waistcoat*"' }
 UNION
 { ?_s1o ?_s1p ?id . ?_s1o ?_s2p ?_s2o . FILTER(?_s2o = "waistcoat") }
 UNION
 { ?_s1o ?_s1p ?id . ?_s1o ?_s2p ?_s2o . ?_s2o ?_s3p ?_s3o . ?_s3o bif:contains
'"waistcoat*"' }
 UNION
 { ?_s1o ?_s1p ?id . ?_s1o ?_s2p ?_s2o . ?_s2o ?_s3p ?_s3o . FILTER(?_s3o = "waistcoat") }
 }
 .
 FILTER((?location = <https://sws.geonames.org/3017382/> || ?parentCountry =
<https://sws.geonames.org/3017382/>) && (?technique = <http://data.silknow.org/vocabulary/379>
|| ?broaderTechnique = <http://data.silknow.org/vocabulary/379>))
}
LIMIT 20
OFFSET 0

Q2.4 Production Place: “France” & text_search: “waistcoat”& Technique:”Velvet”” & Material:”silk
thread” (11 results)

79

ADASilk API:
https://ada.silknow.org/api/search?field_filter_location=https%3A%2F%2Fsws.geonames.org%2F30
17382%2F&field_filter_material=http%3A%2F%2Fdata.silknow.org%2Fvocabulary%2F277&field_filt
er_technique=http%3A%2F%2Fdata.silknow.org%2Fvocabulary%2F379&page=1&q=waistcoat&typ
e=object

SILKNOW API: http://grlc.eurecom.fr/api-
git/silknow/api/obj_list_text_search?material=silk%20thread&text=waistcoat&technique=Velvet&loca
tion=France&endpoint=http%3A%2F%2Fdata.silknow.org%2Fsparql

SPARQL-Transformer (ADASilk):
{
 "@graph": [{
 "@id": "?id",
 "@graph": "?g"
 }],
 "$where": ["\n GRAPH ?g { ?id a ecrm:E22_Man-Made_Object }.?production
ecrm:P108_has_produced ?id\n .\n ?production ecrm:P8_took_place_on_or_within
?location.OPTIONAL { ?location geonames:parentCountry ?parentCountry . }.?production
ecrm:P126_employed ?material.OPTIONAL { ?broaderMaterial (skos:member|skos:narrower)* ?material
}.?production ecrm:P32_used_general_technique ?technique.OPTIONAL { ?broaderTechnique
(skos:member|skos:narrower)* ?technique }\n .\n \n {\n { ?id ?_s1p ?_s1o .
?_s1o bif:contains '\"waistcoat*\"' }\n UNION\n { ?id ?_s1p ?_s1o . FILTER(?_s1o =
\"waistcoat\") }\n UNION\n { ?_s1o ?_s1p ?id . ?_s1o ?_s2p ?_s2o . ?_s2o
bif:contains '\"waistcoat*\"' }\n UNION\n { ?_s1o ?_s1p ?id . ?_s1o ?_s2p ?_s2o .
FILTER(?_s2o = \"waistcoat\") }\n UNION\n { ?_s1o ?_s1p ?id . ?_s1o ?_s2p ?_s2o .
?_s2o ?_s3p ?_s3o . ?_s3o bif:contains '\"waistcoat*\"' }\n UNION\n { ?_s1o ?_s1p
?id . ?_s1o ?_s2p ?_s2o . ?_s2o ?_s3p ?_s3o . FILTER(?_s3o = \"waistcoat\")
}\n }\n \n .\n FILTER((?location = <https://sws.geonames.org/3017382/> ||
?parentCountry = <https://sws.geonames.org/3017382/>) && (?material =
<http://data.silknow.org/vocabulary/277> || ?broaderMaterial =
<http://data.silknow.org/vocabulary/277>) && (?technique =
<http://data.silknow.org/vocabulary/379> || ?broaderTechnique =
<http://data.silknow.org/vocabulary/379>))\n "],
 "$filter": [],
 "$offset": "0",
 "$limit": 20,
 "$prefixes": {
 "rdfs": "http://www.w3.org/2000/01/rdf-schema#",
 "schema": "http://schema.org/",
 "ecrm": "http://erlangen-crm.org/current/",
 "crmdig": "http://www.ics.forth.gr/isl/CRMext/CRMdig.rdfs/",
 "dc": "http://purl.org/dc/elements/1.1/",
 "geo": "http://www.w3.org/2003/01/geo/wgs84_pos#",
 "geonames": "http://www.geonames.org/ontology#",
 "skos": "http://www.w3.org/2004/02/skos/core#",
 "silk": "http://data.silknow.org/ontology/property/"
 }
}

Generated SPARQL Query: Link
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX schema: <http://schema.org/>
PREFIX ecrm: <http://erlangen-crm.org/current/>
PREFIX crmdig: <http://www.ics.forth.gr/isl/CRMext/CRMdig.rdfs/>
PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX geo: <http://www.w3.org/2003/01/geo/wgs84_pos#>
PREFIX geonames: <http://www.geonames.org/ontology#>
PREFIX skos: <http://www.w3.org/2004/02/skos/core#>
PREFIX silk: <http://data.silknow.org/ontology/property/>

80

SELECT DISTINCT ?id ?g
WHERE {
 GRAPH ?g { ?id a ecrm:E22_Man-Made_Object }.?production ecrm:P108_has_produced ?id
 .
 ?production ecrm:P8_took_place_on_or_within ?location.OPTIONAL { ?location
geonames:parentCountry ?parentCountry . }.?production ecrm:P126_employed ?material.OPTIONAL {
?broaderMaterial (skos:member|skos:narrower) ?material }.?production
ecrm:P32_used_general_technique ?technique.OPTIONAL { ?broaderTechnique
(skos:member|skos:narrower) ?technique }

 FILTER((?location = <https://sws.geonames.org/3017382/> || ?parentCountry =
<https://sws.geonames.org/3017382/>) && (?material = <http://data.silknow.org/vocabulary/277> ||
?broaderMaterial = <http://data.silknow.org/vocabulary/277>) && (?technique =
<http://data.silknow.org/vocabulary/379> || ?broaderTechnique =
<http://data.silknow.org/vocabulary/379>))
}
LIMIT 20
OFFSET 0

14

	D6.6_09bis
	deliverable last page in pdf

